User Manual

Delta™ Family: Handheld XRF Analyzers

PREMIUM

STANDARD

CLASSIC
<table>
<thead>
<tr>
<th>SECTION</th>
<th>TOPIC</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Manual Structure</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Document Conventions</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Messages</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Type Styles</td>
<td>10</td>
</tr>
<tr>
<td>C1. Introduction</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Description of Delta System</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Applications</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Delta Family: Types, Models, Modes and Calibrations</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Inspection</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Tour of the Delta Carry Case</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Tour of Instrument</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>1. Handheld Analyzer</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2. Delta Docking Station (DDS)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>3. Accessories</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>STANDARD Accessories</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Batteries</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Delta Docking Station (DDS)</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Power Adapter for DDS</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>I/O Cables</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Cal_Check (Standardization) Coupon</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Measurement Window Films</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Application Software</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>OPTIONAL Accessories</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>AC Power Adapter</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>PC Software</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>XRF Workstation</td>
<td>20</td>
</tr>
<tr>
<td>C2. Safety Information</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Radiation Safety Information</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Radiation Safety Program</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>X-Ray Safety</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>General Precautions</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Service Considerations</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Electrical Precautions</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Cables and Cords</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Cable Guidelines</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Delta Docking Station (DDS) and Li ion Battery Packs</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Indicator and Warning Lights</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Power Switch w/ Integral Indicator Light</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Light</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>X-Ray Indicator Light Array</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>X-Ray Indicator ON (Blinking)</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>X-Ray Indicator ON Continuously (Not Blinking)</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Proximity Sensor</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Back of Analyzer</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>X-Ray Label</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Other Safety Features</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Proximity Sensor</td>
<td>27</td>
</tr>
<tr>
<td>C2. Safety Information, Continued</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Safety Interlock Structure</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Software Trigger Lock</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Software Proximity Sensor</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Safeguards</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Instrument Usage Scenarios</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Correct Usage</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Test in Place</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Small Component Testing</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Incorrect (Unsafe) Usage</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Compliance</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Radiation Doses for Several Scenarios</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Radiation Doses from Typical Exposures</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Radiation Safety: Common Questions & Answers</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Analyzer Shut Down</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Delta Radiation Profile</td>
<td>37</td>
</tr>
<tr>
<td>C3. Safety Administration</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Radiation Safety Training Recommendations</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Dosimeter Badges</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Dosimeter Safety Program</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Registration Requirements</td>
<td>42</td>
</tr>
<tr>
<td>C4. Operations</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Safety First !</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set Up and Use the Delta Docking Station</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Configure Delta Docking Station</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Use the Delta Docking Station for Charging Batteries</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Use the Delta Docking Station for Startup - Initial Cal Check</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>SNAPSHOT of Delta’s User Interface</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Typical Test Procedure</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>End of Day Operations</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>……DATA connection between analyzer and PC</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Battery Issues</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>1 — Changing a Battery</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2 — Battery Status</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>3 — HOT SWAP for Delta Battery</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Cal_Check Information</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>TIPS - or - things you should know about the Delta</td>
<td>52</td>
</tr>
<tr>
<td>C5. Alloy Analysis Modes</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Introduction to Alloy Analysis Modes</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Alloy, Alloy Plus, FastID, Pass/Fail, Precious Metals Additions</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Determination of Grade Identification:</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Match Issues</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Grade Match Messaging</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>SmartSort</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Nominal Chemistry</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Tramp Library</td>
<td>57</td>
</tr>
<tr>
<td>SECTION</td>
<td>TOPIC</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>C5. Alloy Analysis Modes, Continued</td>
<td>Test Sample Considerations</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Coated or Painted Samples</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Mixed Samples, Heterogeneous Materials</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Small and Irregularly Shaped Samples</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Introduction to FastID Mode (All Models)</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Introduction to Pass/Fail Mode (All Models)</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>1. Fingerprint Option</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>2. Chemistry Option</td>
<td>60</td>
</tr>
<tr>
<td>C6. Mining Modes</td>
<td>Mining, 2 Beam Mining, CAR Catalyst</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Check Standards</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Sample Presentation</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>in situ testing</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Bagged or prepared sample testing</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Optional Accessories</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Typical Test Procedure</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Mining Mode Options</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Factors</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Procedure</td>
<td>63</td>
</tr>
<tr>
<td>C7. Soil Modes</td>
<td>Soil and 3 Beam Soil</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>with Environmental and Exploration calibrations</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Soil Mode Beam Selection</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>SmartShot</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>PowerShot</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Check Standards</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Sample Preparation</td>
<td>66</td>
</tr>
<tr>
<td>C8. Consumer Goods Analysis Modes</td>
<td>RoHS and Consumer Products</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Introduction to RoHS Mode</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Test Overview</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Check Standards</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Sample Presentation</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>IEC Quantitative Screening Requirements</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Elemental Range/Limits for RoHS Compliance</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Grade Definitions for Screening</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Introduction to Consumer Products Mode</td>
<td>72</td>
</tr>
<tr>
<td>A1. Overview: X-Ray Fluorescence (XRF) Spectrometry</td>
<td>Basic Theory</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>History</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Timeline for XRF Spectrometry</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Elemental Analysis</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>EDXRF Spectrometers</td>
<td>77</td>
</tr>
<tr>
<td>A2. Soil Testing</td>
<td>Section 1: Commonly Accepted Methods for Field Portable XRF</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Section 2: Overview of Field Usage:</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Section 3: Quality Assurance</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Section 4: Calibration for Innov-X Portable XRF</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Section 5: Effects of Moisture on XRF Results</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Section 6: Comparing XRF Results to Laboratory Results</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Section 7: Common Interferences</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Section 8: Sample Prep Procedures and Testing Protocols</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Section 9: NIST Certificates of Analysis</td>
<td>91</td>
</tr>
<tr>
<td>A3. Specifications</td>
<td>Handheld Analyzer</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Docking Station</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Accessories</td>
<td>96</td>
</tr>
<tr>
<td>A4. Typical Delta Test Sequence</td>
<td>Innov-X Delta User Interface</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Typical Sample Test Procedure</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Best Practices for Testing -- Various Modes</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Check Standards</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Sample Presentation</td>
<td>100</td>
</tr>
<tr>
<td>A5. User Maintenance</td>
<td>5.1 — Alternative Techniques for Powering or Charging the Delta</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>5.1.1. AC Power Adapter Kit</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>5.1.2. Li ion Battery Charger Assembly</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>5.2 — Window Replacement for “Hinged Plate” Analyzers</td>
<td>104</td>
</tr>
<tr>
<td>A6. Packing and Shipping</td>
<td>Instructions for Obtaining a RMA</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Contact Points for Innovx Offices and Depots</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Special Regulations & Label for Shipping Li-Ion Batteries</td>
<td>108</td>
</tr>
</tbody>
</table>
CONTENTS - Page 3 of 3

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TOPIC</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7. Legal Information</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Innov-X Delta Analyzer Limited Warranty</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>General Terms</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Limitation of Liability</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Warranty Period</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Warranty Returns</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Warranty Repairs</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Contacting Innov-X</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>End User Software License Agreement</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Copyright</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>License</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Use of the Software</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Restrictions</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Termination</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>U.S. Government End Users</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>European Community End Users</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Medical or Therapeutic Use Prohibited</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Limited warranty and Limitation of Remedies</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Limitation of liability</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>116</td>
<td></td>
</tr>
</tbody>
</table>

A8. Alloy Factory Grade Libraries	117
Alloy Library Complement	117
Tramp Library	117
Classic Factory Grade Library	118
Standard Factory Grade Library	120
Premium Factory Grade Library	122
During Delta's development and initial product shipments several End User documents have been created. They are listed in the table below.

<table>
<thead>
<tr>
<th>Innovx</th>
<th>Part #</th>
<th>Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>103201_RevR</td>
<td>103201_RevR</td>
<td>June/2010</td>
<td>Delta Family User Manual (This document)</td>
</tr>
<tr>
<td>TBA</td>
<td>TBA</td>
<td>6/2010</td>
<td>HOW TO: Convert A-020-A or A-020-O Teststand/Workstation to Support a Delta Analyzer</td>
</tr>
</tbody>
</table>
Preface

This Preface provides the following information:

• “Manual Structure”
• “Document Conventions”

Manual Structure

This User Manual consists of eight chapters, ten appendices, this Preface, Table of Contents, and a Cover. Individual chapter material is summarized below:

C1. Introduction describes the basics of the system:
• The Innov-X Delta™ Family
• Visual tour of the instrument noting all the major components

C2. Safety Information describes general safety information:
• Priority Information
• General Precautions
• Electrical Precautions
• X-ray Safety
 • Safety Interlock Structure
 • Safe and Unsafe Usage Scenarios
 • Radiation Doses for Several Scenarios
 • Comparative Analysis of Typical Exposure
 • Common Questions and Answers
• Delta Radiation Profile
• Required Certification
• Analyzer Shut-down Procedures

C3. Safety Administration describes safety program information:
• Radiation Safety Training Recommendations
• Dosimeter badges
• A typical dosimeter monitoring program
• Dosimeter service contractors
• Registration requirements

C4. Operations describes operations and testing procedures:
• Configure and Use Delta Docking Station (DDS)
• Start-up Procedure
• Cal Check Issues
• Battery Issues
• Conducting and Ending Test Operations

NOTE

Information concerning the Delta Family’s user interface is supplied in the companion document “Delta User Interface Guide” (PN103202_Rev2.5 June/2010).

The goal is to provide revised Delta UI Guides when a substantial software change is released.

C5. Alloy Analysis Modes describes five specific modes and calibrations including:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy</td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>Alloy Plus</td>
<td>Precious Metal Additions</td>
</tr>
<tr>
<td>FastID</td>
<td></td>
</tr>
</tbody>
</table>

C6. Mining Analysis Modes describes three specific modes and calibrations including:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining</td>
<td>Car Catalyst</td>
</tr>
<tr>
<td>Two Beam</td>
<td></td>
</tr>
<tr>
<td>Mining</td>
<td></td>
</tr>
</tbody>
</table>
C7. Soil Analysis Modes describes two specific modes and two calibrations including:

- Soil
- Environmental
- Three Beam Soil
- Exploration

- LEAP issues for Classic Delta (PiN detector)
- Check Standards
- Sample Preparation

C8. Consumer Goods Modes describes two specific modes including:

- RoHS
- Consumer Products

- RoHS Mode provides details from EU regulation directives which list the limits for RoHS elements and information for qualitative measurements.
- Consumer Products Mode is dedicated to testing for Lead (Pb)

A1. Overview: X-Ray Fluorescence (XRF) Spectrometry presents background information and general knowledge, including:

- Basic Theory and X-ray History
- Elemental Analysis
- EDXRF Spectrometers

A2. Soil Testing presents information on using the analyzer for soil analysis within certain accepted guidelines, including:

- Status for Field Portable XRF and Overview of Field Usage
- Quality Assurance
- Calibration for Innov-X Portable XRF
- Effects of Moisture on XRF Results
- Comparing XRF Results to Laboratory Results
- Common Interferences
- Sample Prep Procedures and Testing Protocols

A3. Specifications presents analyzer hardware and software specifications.

A4. Typical Delta Test Sequence

- Prerequisites noted by Mode
 - Grade Libraries
 - Check Standards
 - Sample Presentations
 - Typical Test Sequence

A5. User Maintenance provides a key procedure/technique:

- Using the AC Power Adapter kit to replace a Li-ion battery
- Using the stand-alone battery charger
- Replacing a Prolene, Mylar, or Kapton Window

A6. Packing and Shipping gives the procedure for returning a unit to Innov-x.

- Warning Label for shipping products with Li-ion batteries

A7. Legal Information presents material, including:

- Analyzer Limited Warranty including:
 - Limitation of Liability
- Warranty Period, Returns, and Repairs
- Instructions for Contacting Innov-X
- End User Software License Agreement including:
 - Use, Restrictions, and Termination of Software
 - Liability Limitations

A8. Alloy Grade Libraries including the Alloy Factory Grade library for each Model, and a “Tramp” Library with seven base alloys.
Document Conventions

Messages

There are four messages used in this Manual:

WARNING, CAUTION, NOTE, and GOTO.

They are characterized by an icon and a message box topped with a colored banner. The message text is on a gray background. An example of each message is below:

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMANDS that you observe the actions given in the text.</td>
</tr>
<tr>
<td>The WARNING message has a bold type style.</td>
</tr>
<tr>
<td>Remember: The WARNING icon signifies information that denotes a potentially hazardous situation, which if not avoided, may result in serious injury or death.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUGGESTS that you review the referenced details and heed the instructions offered.</td>
</tr>
<tr>
<td>The CAUTION message has a regular type style with emphasized keywords.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQUESTS that you pay particular attention to a specified procedure or piece of information. Adds details that make it easier to use the system and this manual.</td>
</tr>
<tr>
<td>The NOTE message has a regular type style.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GO TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECTS the user to another portion of this manual, or to other reference materials containing relevant data.</td>
</tr>
<tr>
<td>The GOTO (or Pointer) message has a regular type style.</td>
</tr>
</tbody>
</table>
Type Styles

These conventions are used to present information:

<table>
<thead>
<tr>
<th>Convention (Type Style)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold</td>
<td>Indicates an action taken on a button or other item.</td>
</tr>
<tr>
<td>Italic</td>
<td>Menu commands, names of keys, buttons, tabs, or items from picklists. User-entered text. It is used for references to other documents, C(hapter) titles, and A(ppendix) titles (for example, “... see “C2. Safety Information”). Labels on unit’s I/O panels; panel or window names of the Ul (User Interface).</td>
</tr>
<tr>
<td>Courier type-face</td>
<td>Computer displayed text or filename.</td>
</tr>
</tbody>
</table>

Pagination

Page numbering in this Manual is consecutive with the Front Cover being assigned Page Number 1. This enables the PDF document file and any hard-copy print to map to the Page field information in the Adobe Reader.
C1. Introduction

C1 includes a:
- Description of the Innov-X Delta™ family of handheld XRF analyzers.
- Visual tour of the instrument(s) noting all the major features, and accessories.

Description of Delta System

What Is It?
The Delta is a handheld energy dispersive X-Ray fluorescence spectrometer, generally referred to as an XRF analyzer. A complete Delta package consists of:
- Handheld analyzer using an integrated group of instrument components that are sealed in an ergonomically designed, light-weight body. They include --
 - Controller
 - Color touchscreen (ergonomically mounted interactive display)
 - Membrane navigation keys
 - Choice of detectors (PIN or SDD) to meet wide-ranging application goals

Coordinated with these robust characteristics, the instrument’s key feature is Innov-X’s proprietary control, data acquisition, and analysis software with customer configured options.

Additional accessories (standard and optional) include:
- Li-Ion batteries (2) - [Standard]
- Delta Docking Station (DDS) Dedicated charging and calibration unit - [Standard]
- Rugged waterproof carry case - [Standard]
- Portable test stand to create a Delta workstation (A-020-D) [Optional]
- Soil foot (A-035) (Optional)
- Soil extension pole (990055) (Optional)
- Trimble Xplorer Package (Optional)

What Does It Do?
The expanded Delta family of handheld XRF instruments delivers fast and precise identification and analysis for elements from magnesium to uranium (Mg to U) depending on the selected model. A weatherproof/dustproof ultra rugged design including an integral heat sink permits users to conduct diverse analysis testing under severe operating conditions. An added convenience feature for field use is battery “Hot Swapping.”

Applications
The analyzer gives accurate chemical analysis for commercial or industrial areas, such as:
- Positive Material Identification
- Scrap Processing
- Mining and Exploration
- Environmental Testing
- Consumer Safety
- Light Element & Aluminum Analysis
Delta Family: Types, Models, Modes and Calibrations

Delta Types and Models

<table>
<thead>
<tr>
<th>Type</th>
<th>Modes</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium</td>
<td>Alloy</td>
<td>DP-2000</td>
</tr>
<tr>
<td></td>
<td>Environmental</td>
<td>DP-4000</td>
</tr>
<tr>
<td></td>
<td>Mining</td>
<td>DP-6000</td>
</tr>
<tr>
<td></td>
<td>RoHS</td>
<td>DP-6500</td>
</tr>
<tr>
<td>Standard</td>
<td>Alloy</td>
<td>DS-2000</td>
</tr>
<tr>
<td></td>
<td>Environmental</td>
<td>DS-4000</td>
</tr>
<tr>
<td></td>
<td>Mining</td>
<td>DS-6000</td>
</tr>
<tr>
<td></td>
<td>RoHS</td>
<td>DS-6500</td>
</tr>
<tr>
<td>Classic</td>
<td>Alloy</td>
<td>DC-2000</td>
</tr>
<tr>
<td></td>
<td>Environmental</td>
<td>DC-4000</td>
</tr>
<tr>
<td></td>
<td>Mining</td>
<td>DC-6000</td>
</tr>
<tr>
<td></td>
<td>RoHS</td>
<td>DC-6500</td>
</tr>
</tbody>
</table>

Modes and Calibrations

<table>
<thead>
<tr>
<th>ALLOY Analysis</th>
<th>Alloy Analysis</th>
<th>MINING Analysis</th>
<th>LEAD PAINT Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alloy</td>
<td>Mining Mode</td>
<td>Lead in Paint (HUD)</td>
</tr>
<tr>
<td></td>
<td>Alloy Plus</td>
<td>2 Beam Mining</td>
<td>Lead in Paint (Industrial)</td>
</tr>
<tr>
<td></td>
<td>FastID & Pass/Fail</td>
<td>Car Catalyst</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precious Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL Analysis</td>
<td>Environmental</td>
<td>THIN Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exploration</td>
<td>Filter Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dust Wipe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONSUMER Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RoHS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consumer Products</td>
<td></td>
</tr>
</tbody>
</table>
Inspection

Use this procedure:
1. Remove the carry case from the shipping cartons; save cartons.
2. Open the carry case
 Remove the shipping documentation
3. Verify that all the parts and accessories are included.
 Remember that the case has TWO FOAM LAYERS.
4. Verify that no visible damage occurred during shipping.

WARNING

If there is damage to any of the components, DO NOT attempt to use the instrument.
Immediately contact Innov-X Customer Support at:

- United States: 1-781-938-5005
- Europe: +31 (0)73 62 72 590
- Canada: 1-778-960-6279
- Australia: 02-9577-9500

Or call your local distributor.

GO TO

- See “Delta User Interface Guide” (PN 103202) for a complete description of the Innov-X application’s User Interface.
- See A7. Legal Information for warranty, liability, and software licensing information.
Tour of the Delta Package

The figure below depicts Delta’s major components as initially shipped to a customer. Note that the protective foam in the Carry Case has TWO LAYERS.

Component Key

—Foam: Top Layer—
1. Delta Analyzer
2. Carry Case
3. Docking Station Charger
4. USB Cable #1
5. USB Cable #2
6. Li-ion Batteries (2)
7. Cal Check Coupon
8. Extra Windows (Bag of 10)
9. End/User Documentation

—Foam: 2nd Layer—
10. Docking Station
11. AC Power Adapter (Optional)
Tour of Instrument

1. Handheld Analyzer

<table>
<thead>
<tr>
<th>Component Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta - All Models</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

- Heat Sink
- I/O Power Switch w/LED Indicator
- X-ray Warning Light Array
- Navigation Buttons
2. Delta Docking Station (DDS)

Component Key

<table>
<thead>
<tr>
<th></th>
<th>Delta - All Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Delta Docking Station (Empty)</td>
</tr>
<tr>
<td>2</td>
<td>Analyzer Signal/Control Connector</td>
</tr>
<tr>
<td>3</td>
<td>Spare Battery Charge Socket</td>
</tr>
<tr>
<td>4</td>
<td>CalCheck Test Cup (316 stainless steel coupon)</td>
</tr>
<tr>
<td>5</td>
<td>Docking Station (Loaded)</td>
</tr>
<tr>
<td>6</td>
<td>Second Battery in Socket</td>
</tr>
</tbody>
</table>
| 7 | Data Port(s): — Docking Station - >Rear
 — Analyzer - > Left Side |
| 8 | Input Power (12 VDC) |
| 9 | Indicator Lights |
| a | Second Battery Charging |
| b | Analyzer Engaged |

See C4/Pages 44-45 for more information
3. Accessories - List the Standard and Optional Accessories

Standard
- Batteries
- Delta Docking Station (DDS)
- DDS Power Adapter
- USB Cables 1 - USB mini to USB A
- USB Cable 2 - two part powered data cable
- Windows - Bags of Kapton and Prolene films
- Cal Check (Standardization) Coupon

Optional
- AC Power Adapter (Battery Replacement)
- A-020-D TestStand/Workstation for Delta

STANDARD Accessories

Batteries

Two removable Li-ion batteries are standard accessories for the Delta.

Push the white Push button and the LEDs indicate the percentage of charge.

See Chapter 4, Page 50 “Battery Issues”

Delta Docking Station (DDS)

This is key accessory. It provides three functions:
- Cal Check by one of two means - “On Demand” or Automatically
- Charge internal battery in handle
- Charge additional battery in auxiliary socket

See Chapter 4, Page 46 “Use DDS for Start Up & Initial Cal Check”
I/O Cables

PN 101310: This standard accessory provides a means to transfer information into or out of the sealed analyzer. It is good practice to export the current day’s testing results to your PC.

PN 103209 and 103210: This is a two part assembly that supports communication between the Delta Docking Station and a PC.
Cal Check (Standardization) Coupon

This part is used as a reference sample to provide a test standard for a Cal Check procedure if the Docking Stations is not available. The instrument indicates when a Cal_Check is necessary.

See Chapter 4, Page 51 “Cal Check Information”

Measurement Window Films

A bag of 10 window films are a standard accessory. The composition of the film is model and application dependent.

PN 103115 REV A
Kapton Windows for Classic

PN 102999
Prolene windows for Standard and Premium

Application Software

The Delta instrument is shipped with proprietary InnovX data acquisition and processing software and Windows Embedded CE® operating system. The User Interface employs an icon-based home page graphic style. Factory calibration has been completed on all purchased modes.

Sedately User Interface Guide” (PN 103202) for a complete description of the Innov-X application’s User Interface.
OPTIONAL Accessories

AC Power Adapter
PN 100043: This accessory enables the user to operate the instrument without the limitation of battery charge status. The unit comes with approximately ten feet of power cord that defines the effective range of use.

PC Software
This application package permits an operator to execute Innovx S/W functions from a PC. With cable PN 101310, a user can connect from the Delta's mini-USB data port to a PC’s USB port. This package is optional for a handheld instrument and standard for A-020-D TestStand/Workstation. When used with the A-020-D the proper configuration cable is the powered USB assembly (PN 103209 - PN 103210)

XRF Workstation
The Delta XRF Workstation is comprised of two major components:
• A-020-D Test Stand, and
• Any Delta analyzer
In this configuration, the Delta is controlled by Innovx Delta PC Software. The open-beam handheld instrument is converted to a closed-beam workstation.

The XRF Workstation offers the following features:
• Portable, light-weight, shielded enclosure
• A rugged and repeatable testing environment
• Easily erected in laboratory or at remote field site

In this configuration the Delta (an open-beam handheld instrument) is converted to a safe closed-beam system

See PN 103158 document: “HowTo-Setup & Configure Delta XRF Workstation” for complete instructions.
C2. Safety Information

C2 presents the following information:

- Radiation Safety Information
- General Precautions
- Electrical Precautions
- X-Ray Safety
- Compliance
- Instrument Usage Scenarios
- Radiation Dosage for Several Scenarios
- Radiation Safety: Common Questions and Answers
- Analyzer Shut Down Procedure

Radiation Safety Information

Always make Operational Safety your HIGHEST PRIORITY.

The Delta Handheld XRF Analyzer is a secure and dependable instrument when used according to Innov-X’s recommended testing techniques and safety procedures. However, this instrument produces ionizing radiation; only individuals trained in correct operating techniques and authorized to use X-ray producing devices should be permitted to use it.

The radiation detected at any outside surface (excluding the Prolene, Mylar, or Kapton window area) is below that required for an unrestricted area.

- Heed all warning labels and messages
- Observe the safety interlock features

X-ray tubes in Delta instruments can emit dangerous levels of ionizing radiation. Prolonged exposure can cause serious illness, injury, or death.

It is the responsibility of Innov-X Systems’ customers to follow the operating instructions and safety recommendations of this guide and good radiation control practices.
Radiation Safety Program

Innov-X strongly recommends that organizations using Delta analyzers implement a formal Radiation Safety Program that includes:

- Dose monitoring of critical personnel.
- Monitoring of area radiation levels.
- Information specific to the site and application of the XRF system.
- An annual review (and update, if necessary).

“C3. Safety Administration” provides a more comprehensive safety discussion for operators and managers.

X-Ray Safety

X-ray safety is a priority at any time and in any testing situation.

WARNING

- Innov-X analyzers must be used by trained and authorized operators, according to proper safety procedures. Improper usage may circumvent safety protections and could potentially cause harm to the user.

- Heed all warning labels and messages.

- DO NOT USE the instrument if there is any chance that it is damaged or might leak radiation. In such a case, arrange for qualified personnel to perform a radiation safety test and repair any analyzer damage.

General Precautions

Apply these general safety guidelines when managing or operating the Delta instrument:

- Retain and follow all product safety and operating instructions.
- Comply with all warnings on the product and in the operating instructions.

Comply with the precautions listed in this section to reduce the risk to:

- Users
 - Physical injury
 - Electric shock
 - Radiation exposure
- Equipment damage
 - Measurement window
 - Overheated electronics and other internal components
Service Considerations

Except as expressly noted here, do not service any Innov-X product yourself. Opening or removing the external housings may expose you to electric shock and the instrument to mechanical damage. It also voids the warranty.

CAUTION

If service is required, it must be performed by Innov-X or its authorized service representatives. Failure to observe this can result in loss of warranty. The **ONLY EXCEPTION** is replacing a damaged measurement window (see “A5. Window Replacement”).

<table>
<thead>
<tr>
<th>Damage Requiring Service</th>
<th>Types of problems or conditions that require service are (but not limited to):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Power cords are damaged.</td>
</tr>
<tr>
<td></td>
<td>• Excessive or corrosive liquids spilled on the instrument or accessories.</td>
</tr>
<tr>
<td></td>
<td>• Instrument impacted, dropped, or physically damaged.</td>
</tr>
<tr>
<td></td>
<td>• Noticeable signs of overheating.</td>
</tr>
<tr>
<td></td>
<td>• Instrument or docking station does not perform normally when you follow the</td>
</tr>
<tr>
<td></td>
<td>usual operating instructions.</td>
</tr>
</tbody>
</table>

Electrical Precautions

Guidelines for safe electrical operation of a *Delta instrument*:

- Use the correct battery or AC power adapter.
 - Install the battery or AC power adapter carefully, don’t damage connections.
- Use the correct external AC power sources for the Delta Docking Station (DDS) (battery charging and Cal Checking) and the AC power adapter:
 - Ensure that the voltage is appropriate (100V-240 V/ 50-60 Hz) for operating either accessory.
- Do not overload an electrical outlet, power strip, or convenience receptacle.
- Do not exceed 80% of the branch circuit rating.
- Comply with the warning messages on the under side of the Battery Charger.
 - Similar precautions should be observed for the Delta Docking Station (DDS).

WARNING

- DO NOT EXPOSE TO WATER
- FULLY ENGAGE BATTERY CONNECTOR
- ONLY USE RECOMMENDED POWER SUPPLY
- DO NOT OBSTRUCT AIRFLOW
- DO NOT OPEN
Cables and Cords

The Delta instrument and docking station is delivered with:
- AC power adapter (1) for Docking Station (standard)
- AC power adapter (2) as battery replacement for instrument (optional)

Each device has a standard IEC 3 conductor power cord which includes a safety grounding plug.
- If necessary, have an authorized individual replace these plugs to conform to local conventions.

Two data cables are supplied:
- Data cable (1) with connectors — USB A to USB B
- Data cable (2) with connectors — USB A to mini USB B

Cable Guidelines

Use these guidelines to ensure safety and proper equipment performance:
- The power cords MUST be connected to a properly grounded and easily accessible power outlet.
- Use a surge protector device, if possible.
- Do not defeat or bypass the ground conductor.
- Do not pull on cords or cables. Grasp the plug housing when removing the cord from the electrical outlet.
- Install all cords in accordance with applicable regulations.
- If you substitute a USB cable, ensure that the length doesn’t exceed 10 feet.

Delta Docking Station (DDS) and Li ion Battery Packs

Plug the Delta Docking Station (and optional battery charger, if utilized) into a grounded electrical outlet that is easily accessible at all times.
- To handle battery packs properly do not:
 — Disassemble
 — Crush
 — Puncture
 — Short external contacts
 — Dispose of in fire or water
 — Expose to temperatures higher than 60 °C (140 °F).

GO TO

See “C4. Battery Issues” for instructions concerning Batteries, the Battery Charger, and the AC Power Adapter.

WARNING

Danger of explosion if battery is incorrectly substituted. Replace only with Innov-X specified batteries.

Used batteries may be returned to Innov-X Systems for disposal. If returning batteries, or equipment with batteries installed, the shipping container must display a special caution label. See “A6. Packing and Shipping” for label details.
Indicator and Warning Lights

Power Switch w/ Integral Indicator Light

The Delta power switch is located at the upper rear of the unit.

POWER ON
- Press the I/O switch to turn on the power.
 - A green LED indicator comes on.
- This switch *DOES NOT* turn on the x-ray tube.
 - No tube power supplied until the Innov-X software is launched and a test is initiated.

POWER OFF
- Press and hold switch for >3 seconds.
 - Unit powers off. (See page 36 for more Exit options)

X-Ray Indicator Light Array

An indicator light array (six red LEDs) alerts the operator when the tube is receiving power, and when x-rays are emitted from the analyzer through the measurement window.

- When the unit is initially powered ON, the Indicator array remains Off.
- As test is conducted, array is in a *flashing* state.
- At the test’s conclusion, the array stays *on continuously* until the beginning of the next test.
X-Ray Indicator On (Blinking)
When the indicator array is flashing, this signifies:
• X-ray tube is powered to full operational level
• Internal filter wheel is in operational position
• Analyzer is emitting x-ray radiation through the analysis window.
In this condition, the analyzer must be pointed at a test sample.

X-Ray Indicator ON Continuously (Not Blinking)
When the indicator array is on continuously, this signifies:
• X-ray tube’s current is set to 0.0
• X-ray tube is producing a minimum level of x-rays
• Internal filter wheel is closed so there is no radiation exposure to you or bystanders.
The instrument is safe to be carried or set down in this condition.

In addition to the I/O switch and the X-Ray indicator array, the back of the Delta analyzer has:

• Touch screen which displays and controls the Delta User Interface.

• Three Navigation Buttons below the screen. They permit the user to conveniently step through the Test Results Spectrum screens.
X-Ray Label

The Delta has a warning label affixed to the lower surface of the probe.

The analyzer has a label on the lower surface of analyzer's probe/nose.
- This label is **required** by most regulatory agencies. Do not remove it.
- The label term “WHEN ENERGIZED” refers to the condition where the tube is fully energized and the filter wheel is open.
- This condition corresponds with the blinking red LEDs that comprise the X-ray indicator array.

Other Safety Features

Proximity Sensor

The Delta automatically detects when it is engaged with a test sample. It immediately shuts off the X-ray tube if:

(a) Initially there is no sample in front of the window,

- or -

(b) Instrument is pulled away from the sample before the test time has expired.
Safety Interlock Structure

For controlling the Delta’s X-ray emissions and therefore minimizing the possibility of accidental exposure, there is a standard safety interlock structure consisting of the three features listed below.

Software Trigger Lock
- If five minutes elapse between tests (default time), the trigger locks automatically and you must tap on the lock icon to unlock it. See Safety Software instructions in “Delta User Interface Guide”.

Software Proximity Sensor
- Within two seconds of a test start, the analyzer detects a sample in front of the measurement window. If not, the test aborts, the filter wheel closes, and the x-rays shut off. The tube is placed in standby and the red light stops blinking.

Safeguards
As an owner of an Delta handheld XRF instrument, your safeguards are:
A. Limited Access
B. Trained Operators
C. Shielding Issues

A. Limited Access
Keep the instrument in a controlled location, where only trained and authorized users are likely to have access.

B. Trained Operators
Keep a sign with the analyzer indicating that in order to use it an operator must have completed a training class provided by your company, or must have attended an Innov-X training course and completed any other requirements as dictated by the local regulating authority. When the Innov-X system is turned on, the controller screen displays a message indicating that the system should only be used by authorized personnel.

C. Shielding Issues

Background
The Delta emits a tightly collimated beam of X-ray radiation. The beam projects many meters when only air attenuates it.

NOTE
Refer to governing regulations on compliance in the jurisdiction installed, dose limits, etc. Requirements differ from state to state, region to region, country to country. DO NOT rely solely on this manual for instruction.

Action
Adequate shielding is achieved by:
- Establishing a no-admittance zone sufficiently distant from the instrument’s measurement window that allows air to attenuate the beam.
- Enclosing the beam working area with protective panels (for example, 1/8” stainless steel can attenuate the beam to background levels)

Contact your Innov-X Systems representative for assistance and suggestions on interlocks and applications for limiting radiation exposure.
Instrument Usage Scenarios

The Delta is used in several testing configurations. Obey the guidelines listed below.

Practical Safety Guidelines for Handheld Analyzers

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DO NOT POINT the unit at yourself or any other person during operation.</td>
</tr>
<tr>
<td>• Never perform a test by holding the sample with your fingers or in the palm of your hand.</td>
</tr>
<tr>
<td>• Always wear both a ring-style and a badge-style dosimeter.</td>
</tr>
</tbody>
</table>

Correct Usage

Test in Place

Test targets can include pipes, valves, large pieces of scrap metal, soil, or any sample large enough to be tested in place.

In this configuration the proper procedure is as follows:

1. Always observe the relevant parts of the Practical Safety Guidelines shown above.
2. Point the instrument at the sample such that no part of your body (including hands and/or fingers) is near the measurement window.
3. Ensure that the Delta’s nose (with window) is firmly placed on the target.
4. Perform the test using one of these methods:
 • Tap Start on the UI
 — or —
 • Pull the trigger (this toggles the instrument to ON state)
 — or —
 • Pull-and-hold the trigger with the “deadman trigger” active.

Employing Steps 3 & 4 assures that no operator’s body part is exposed to an excess radiation dose. The radiation detected at user interface areas is < 5 μSv/h.

Take care that during testing, personnel are not located within three feet (one meter) of the Delta’s probe head, in the direction of the x-ray beam. Provided the window is completely covered, there is minimal radiation being emitted around the area of the sample.

Small Component Testing

Examples of small component targets include metal turnings, weld rod, wires, fasteners, nuts and/or bolts.

For analysis of these types of components, use this procedure:

1. Always observe the relevant parts of the Practical Safety Guidelines shown above.
2. Place the sample on a flat surface.
3. Carefully place the nose/window over the sample.
4. Perform the test using one of these techniques:
 • Tap Start on the UI
 — or —
 • Pull the trigger (this toggles the instrument to ON state)
 — or —
 • Pull-and-hold the trigger with the “deadman trigger” active.
1. Sample lying on a flat surface

SAFETY PRECAUTIONS

WARNING

Do not test samples while sitting at a desk or table. If the desk is made of wood or another non-metallic material, some radiation will penetrate the desk and may provide exposure to legs or feet.

ANALYTICAL PRECAUTIONS

NOTE

If the sample does not completely cover the window, ensure that your background surface does not contain metals or even trace levels of metals, as this may affect the accuracy of the XRF result. The XRF may report the presence of additional metals in the surface material.

2. Clamp-held sample

NOTE

A handheld plastic locking clamp can be an effective and safe tool when analyzing small, irregular shaped samples.
Incorrect (Unsafe) Usage

WARNING

Never hold a sample in your hand such that any part of your body or appendages are exposed to the x-ray beam. Testing samples in this way may generate significant radiation exposure to your fingers.

Unsafe Testing Technique

The sample is held up to the measurement window with fingers. The sample does not completely cover the window. Even though the analyst is wearing a ring dosimeter, this is an unsafe testing technique. Here, the only value that the ring provides is to validate the level of unnecessary radiation exposure that has been experienced.

Unsafe Testing Technique

The sample is held up to the measurement window with fingers. The sample does not completely cover the window. To compound the danger, the analyst is not wearing a ring dosimeter. There is no measure of the radiation exposure endured.

Summary

InnovX repeats the Warning ---

NEVER hold a sample in your hand.

Testing samples in this way generates significant radiation exposure to your fingers.
Compliance

Complying Agency Statements

United States of America: FCC

Changes or modifications not expressly approved by Innov-X Systems, Inc. could void the user’s authority to operate the equipment.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.

Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Radiation Doses for Several Scenarios

In this section we provide data, concrete examples of use and misuse of the analyzer and common questions and answers we encounter when training personnel on the safe use of the Innov-X analyzer. The goal is to explain scenarios of safe versus improper usage.

WARNING

For the x-ray energy emitted by portable XRF analyzers (8-60 keV region), the bone in the fingers will absorb radiation about 3-5 times more than soft tissue, so the bone would be at an elevated radiation risk compared to soft tissue.

For this reason, no person shall hold a test specimen in front of the window with the fingers in the direct beam, or direct the beam at any part of the human body.

The table below presents radiation doses for normal operating conditions and also for examples of misuse of the analyzer and even extreme misuse. Innov-X provides installation training that includes detailed radiation safety training and documentation designed to prevent misuse of the analyzer.

Although the doses shown below are derived from experiments with TLD (thermo-luminescent dosimeters) and may or may not represent actual absorbed dose in human tissue and bone in each scenario, they are examples of the level of x-ray radiation being emitted from the device.

The message is simple:

USE CAUTION AND PROPER TECHNIQUE when operating the device.
<table>
<thead>
<tr>
<th>Example: Instrument Usage</th>
<th>Radiation Exposure and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Operation- Dose to Hand</td>
<td>Maximum exposure is to operator’s hand, at the trigger is $< 1\mu Sv/h$. Annual exposure to hand is then $< 2mSv$. Maximum exposure under ICRP regulations is 500 mSv for radiation workers and 50 mSv for the general public. Thus continuous operation provides a dosage 250 times lower for a radiation worker and and 25 times lower for the general public.</td>
</tr>
<tr>
<td>User analyzes samples according to standard operating procedures described in this manual. Assumption: Operator using system with x-ray tube ON for eight hours/day, five days/week, 50 weeks/year. (Alloy sample).</td>
<td></td>
</tr>
<tr>
<td>Normal Operation- Dose to Torso</td>
<td>Exposure to Torso is so low it cannot be measured (essentially background). To be conservative we use 1/2 the value as the trigger, $< 0.5\mu Sv/h$. Annual exposure using operating conditions above is then estimated at less than 1 mSv. Maximum allowed is 20 mSv under ICRP for radiation workers (1 mSv for general public).</td>
</tr>
<tr>
<td>Analyzer is used under the same operating conditions described above.</td>
<td></td>
</tr>
<tr>
<td>Misuse Example 1: Operator holds samples in front of window with fingers, such that fingers are directly in the primary beam. Presumption is sample does not block any radiation.</td>
<td>At the window, in the primary beam, the maximum dose to the fingers is 20,000 mSv/hr. Assume an operator performs a 10 sec. test (typical). The dose to the operator’s fingers or hand is $20,000 \times (10/3600) = 550$ mSv. If the operator did this just once a year he would exceed the allowable annual dose of 500 mSv to an extremity. Take the extra time to test a sample on a surface or use a testing stand. Note: If the operator takes a shortcut and places his/her fingers within the primary x-ray beam at the window, they will exceed the annual dose rate.</td>
</tr>
<tr>
<td>Do not do this!</td>
<td></td>
</tr>
<tr>
<td>Misuse Example 2: Operator places analyzer against body and pulls the trigger to start a test. Analyzer tests to preset testing time (usually ten seconds) unless operator pulls trigger again to stop test. This applies to analyzer being in contact with operator or with bystander.</td>
<td>Dose at exit of sampling window is 20,000 mSv/h. Dose for a ten second exposure with analyzer in contact with Torso: 550 mSv. If an operator did this act just once, he would exceed the annual safe dosage to the torso of 20 mSv/year by a significant amount!</td>
</tr>
<tr>
<td>Do not do this!</td>
<td>PLEASE NOTE: The maximum dose of 20 mSv/year is a whole body limit, which does not truly apply in this case because the x-ray beam size is small (about 25 mm² area at the port). Applying correction factors for the beam size is complex and beyond the scope of this manual. The important point is that for proper operation there is no reason to ever expose any part of the human body directly to the x-ray source. This example serves to provide estimated exposure in the event this occurs.</td>
</tr>
</tbody>
</table>
Misuse Example 3:
Operator manages to initiate a test for ten seconds running normal soil mode and exposes a bystander that is standing ten cm away from analyzer port. What is exposure to bystander?

Note: The proximity sensor would automatically shut down the x-ray tube immediately, so this is an extremely improbable occurrence. It would require a malfunction of the instrument - this safety feature in NOT modifiable.

Note 2: Equations to scale these to other scenarios involving longer or shorter tests, and bystander being at distances other than ten cm are provided at right.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Typical Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td>2.8 mSv per year</td>
</tr>
<tr>
<td>Dental x-ray</td>
<td>100 μSv per x-ray</td>
</tr>
<tr>
<td>Chest x-ray</td>
<td>80 μSv per x-ray</td>
</tr>
<tr>
<td>Drinking water</td>
<td>50 μSv per year</td>
</tr>
<tr>
<td>Cross country round-trip by air</td>
<td>50 μSv per trip</td>
</tr>
<tr>
<td>Mammogram</td>
<td>1-2 mSv per examination</td>
</tr>
<tr>
<td>Yearly exposure from background* radiation* depends on geographic location</td>
<td>3.6 mSv</td>
</tr>
</tbody>
</table>
Radiation Safety: Common Questions & Answers

Question: When I’m shooting a piece of pipe or valve on a rack or on a table top, is there any exposure to people standing several feet away from the analyzer?

Answer: Even a thin amount of a dense metal sample (three to four mm thickness, not Al alloy) is enough to completely attenuate the emitted x-ray beam. Shooting a piece of material that covers the sampling window on the analyzer completely shields any bystanders from radiation exposure. However, use good practice: Keep the area clear of people for at least four to five feet in front of the analyzer.

Question: If I forget to lock the trigger, I pick up the analyzer and accidentally pull the trigger, is that dangerous to nearby personnel?

Answer: No, this example of misuse is not dangerous, but it may produce a non-negligible radiation exposure to nearby personnel. For an exposure to occur, the following things must happen.

First, you must be holding the analyzer so that a bystander is actually standing in the x-ray beam being emitted. Just being near the analyzer is totally safe otherwise.

Second, the bystander must be within one meter from the nose of the analyzer to receive any appreciable dose. If all of these conditions are true, the dose received by a bystander is still extremely low. Please see Misuse Example 3 in the table above.

Third, it would require failure of the proximity hardware and software.

Question: Do I need to create restricted areas where I am using the analyzer?

Answer: No, provided you are following normal operating procedures there is no reason to restrict access to an area where the analyzer is in use. However, the operator should take precautions to keep any personnel more than three feet away from the sampling window of the analyzer in the event of accidental misuse as detailed above. Should operators also elect to test small samples as shown on pages 34 and 35, they should also be sure that no personnel are standing within about four to five feet of the sampling window.

Question: How does the x-ray tube in the Innov-X system compare to a radiography system used for taking images of metal parts?

Answer: The x-ray tube used in the Innov-X system produces between 1,000 and 10,000 times less power than most radiography systems (0.5-1 watt versus multiple-kW). A portable XRF is designed to perform surface analysis of alloys and other samples, whereas a radiography system is designed to shoot x-rays entirely through metal components in order to obtain an image on the other side of the test object. For example, many tube-based radiography systems use a 300-400 kV tube and currents in the tens or hundreds of milliamperes (mA). The Delta uses a tube operating at a maximum of 40kV and typically 6 -10 μA. The radiation levels produced by an Delta are thousands, or tens of thousands, times lower than a radiography unit.
Question: Should we use dosimeter badges with the Innov-X analyzer?

Answer: Dosimeter badges are required by some provincial regulatory agencies, and optional with others. Innov-X recommends that operators wear badges, at least for the first year of operation, as a general precaution to flag any misuse of the analyzer. Dosimeter badges are available for the torso (generally worn in a shirt pocket) and also as “ring” badges. The best practice is to wear a ring badge on a finger on the opposite hand used to hold the analyzer. This records accidental exposure for the most likely case - an operator grabbing a small sample and holding it in one hand while analyzing it.

Note: These badges generally have a threshold of 100 μSv and are renewed monthly. So it takes several cases of misuse even to obtain a reading on a typical badge. When purchasing a badge, obtain the type used for x-ray and low energy gamma ray radiation.

Analyzer Shut Down

There are several techniques for shutting off the Delta. They can be categorized by whether the action is taken under normal or emergency conditions. Shut down or turned off is defined as: The analyzer cannot provide X-ray emissions.

Under normal conditions

Use one of following actions:
- Press the trigger.
- Tap STOP icon on the UI touchscreen.
- Navigate from Setup > Exit, then choose the Power OFF icon.

- Release the trigger if in “Deadman Trigger” mode.
- Press the I/O power switch; ensure that the On/Off LED goes off.

In an emergency

Because the Innov-X system is a battery-operated, x-ray tube-based analyzer, the Emergency Response plan is simple. If you believe that the analyzer is locked up in an OPEN position, the red X-ray indicator array remains illuminated or blinking:

1. Press the I/O power switch as noted above. If the power does not turn off, continue to Step 2.
2. Open the battery cover and immediately remove the battery.

If you are using the AC Power Adapter:
- Remove the Battery Eliminator from the Delta’s handle — or —
- Pull the AC cord from the AC Power Adapter or pull the plug from the receptacle.
Delta Radiation Profile

This is the current Delta Radiation Profile.

<table>
<thead>
<tr>
<th>Mode(s)</th>
<th>Substrate</th>
<th>Voltage kV</th>
<th>Amperage µA</th>
<th>Filter</th>
<th>Trigger R</th>
<th>Close F</th>
<th>10 cm F</th>
<th>30 cm F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy Plus Mining</td>
<td>316 Stainless</td>
<td>40</td>
<td>100</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Al (319 AA)</td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>3</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil (SiO₂)</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>50</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>Alloy Plus 2</td>
<td>316 Stainless</td>
<td>13</td>
<td>200</td>
<td>7</td>
<td>BK</td>
<td>BK</td>
<td>BK</td>
<td>BK</td>
</tr>
<tr>
<td></td>
<td>Al (319 AA)</td>
<td></td>
<td></td>
<td></td>
<td>BK</td>
<td>BK</td>
<td>BK</td>
<td>BK</td>
</tr>
<tr>
<td>2-Beam Mining</td>
<td>Soil (SiO₂)</td>
<td>10</td>
<td>200</td>
<td>7</td>
<td>BK</td>
<td>BK</td>
<td>BK</td>
<td>BK</td>
</tr>
<tr>
<td>2-Beam Soil 1</td>
<td></td>
<td>40</td>
<td>100</td>
<td>3</td>
<td>1</td>
<td>16</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>3-Beam Soil 2</td>
<td></td>
<td>40</td>
<td>100</td>
<td>2</td>
<td>3</td>
<td>100</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>3-Beam Soil 3</td>
<td></td>
<td>15</td>
<td>200</td>
<td>5</td>
<td>BK</td>
<td>BK</td>
<td>BK</td>
<td>BK</td>
</tr>
</tbody>
</table>

BK – No higher than background

TEST CONDITION: Instrument run at normal setting for mode and represents typical production unit.
C3. Safety Administration

C3 provides information regarding:

- Radiation safety training recommendations
- Dosimeter badges
- A typical dosimeter monitoring program
- Dosimeter service contractors
- Typical registration requirements for operating XRF equipment (in the USA)

Radiation Safety Training Recommendations

Individual companies and states have specific regulations and guidelines for using ionizing radiation generated by an X-ray tube.

Personal Monitoring

Radiation control regulations may require implementation of a radiation monitoring program, where each instrument operator wears a film badge or TLD detector for an initial period of one year to establish a baseline exposure record. Continuing radiation monitoring after this period is recommended, but may be discontinued if accepted by radiation control regulators. See Dosimeter Suppliers for a list of film badges providers.

Proper Usage

Never point the instrument at a person. Never point the instrument into the air and perform a test. Never hold a sample in your hand during a test.

Establish Controlled Areas

Restrict access to the location of instrument storage and use to limit potential exposure to ionizing radiation. In use, the target should not be hand held and the area at least three paces beyond the target should be unoccupied.

Specific Controls

When not in use, store the instrument in a locked case or locked cabinet. When in use, keep it in the direct control of a factory trained, certified operator.

Time - Distance - Shielding Policies

Operators should minimize the time around the energized instrument, maximize the distance from the instrument window, and shoot into high density materials whenever possible.

Prevent Exposure to Ionizing Radiation

All reasonable measures, including labeling, operator training and certification, and the concepts of time, distance, & shielding, should be implemented to limit radiation exposure to as low as reasonably achievable (ALARA).
Dosimeter Badges

A dosimeter badge consists of a radiation-sensitive material, generally an aluminum oxide crystalline layer, which is worn in a small container. It is most often attached to a person’s clothing, on a belt loop, or shirt pocket. It is worn on the body in location(s) that most closely simulate the pattern of potentially absorbed dose.

The protection can also be provided in a plastic ring format. Here the detection material is lithium fluoride crystal.

These devices record a person’s accumulated radiation exposure over a period of time. They monitor individuals working with, or near someone working with devices which emit ionizing radiation.

Dosimeter badges are required by some regulatory agencies, and are optional with others.

Innov-X recommends that (at a minimum) all Delta operators wear badges (both clip-on and ring styles) for the first year that their system is in use.

NOTE

- When purchasing a badge or ring, always select the type used for X-ray and low energy gamma radiation.
- Innov-X suggests that the ring badge be worn on a finger of the opposite hand used to hold the analyzer. This records accidental exposure for the most likely case: An operator grabbing a small sample and holding it in a hand while analyzing it.

Every country (including every region, state, or province within a country) can have differing regulations. Always consult your local radiation protection authority or Innov-X Systems for information and recommendations.
Dosimeter Safety Program

A typical dosimeter-based safety program uses the following steps:
1. The company develops a dosimeter program with an independent service contractor.
 • They establish the quantity of badges needed and the frequency of analysis (a monthly or quarterly interval)
2. The company receives the first lot of badges and provides them to their analyst/operators.
3. At the end of the interval:
 • The company collects the badges and returns them to the service contractor for analysis.
 • Simultaneously, the service contractor delivers another lot.
4. The company provides the new set of badges to maintain a continuous protection/monitoring program for their employees.
5. The service contractor prepares a report for the company that tabulates any X-ray dose received and identifies any personnel with readings higher than typical background radiation.
6. The safety monitoring cycle repeats with Steps 1 through 5.

NOTE

The service contractor’s written records are very important to a company’s overall safety documentation plan.

Dosimeter Suppliers

Some dosimeter service companies are:

<table>
<thead>
<tr>
<th>Company</th>
<th>Location</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEIL</td>
<td>Houston, TX</td>
<td>713-790-9719</td>
</tr>
<tr>
<td>Global Dosimetry Solutions</td>
<td>Irvine, CA</td>
<td>800-251-3331</td>
</tr>
<tr>
<td>Landauer</td>
<td>Glenwood, Il</td>
<td>708-755-7000</td>
</tr>
<tr>
<td>• Landauer, Inc.</td>
<td>Oxford, England</td>
<td>+44-1 86-537-3008</td>
</tr>
<tr>
<td>• Nagase Landauer, ltd.</td>
<td>Japan</td>
<td>+81-3-36 66-4300</td>
</tr>
<tr>
<td>• LCIE Landauer</td>
<td>Paris, France</td>
<td>+33-(0)1-40 95 62 90</td>
</tr>
<tr>
<td>• Landauer</td>
<td>Beijing, China</td>
<td>+86-10-62 21 56 35</td>
</tr>
</tbody>
</table>
Registration Requirements

Contact Innov-X for assistance with locating registration requirements information.

- Most states require some form of registration. Generally they require the registration to be received within 30 days of receipt of the system.
- Some states require no registration.
- Some states require notification in advance.

Customers are advised to consult their local radiation protection authority for specific regulatory information.

Typical Device Registration Information

The following information is usually requested by a licensing agency:

Purpose of device:
Response is Analytical or Industrial.
Be sure to inform the government registration office that the system will NOT be used for radiography or for medical uses.

Radiation Safety Officer:
List person who monitors training, safe use, and controls access to the system.

Authorized Users:
List the analyst/operators who have been trained and authorized by the instrument owner and/or regulating agency to operate the XRF equipment.

Operating parameters of the Delta XRF analyzer:
8—40 kV, 5 - 200 uA max.

Type of system:
Response is: Handheld/Portable

User Training Specified:
Indicate that only individuals receiving manufacturer training, documented by a manufacturer’s training certificate, will operate the system. Additional training may be required. Verify with the local regulating agencies the level and type of training required.

Personal Monitoring
Many government agency registration forms require that you indicate whether or not you intend to perform dosimeter monitoring.

See “Dosimeter Safety Program” on previous page for information regarding typical personal radiation monitoring.

CAUTION

Always keep the following documentation at the job site:
- Copy of License Registration
- Other pertinent government agency documentation
- Copies of any dosimeter analysis reports
- Copy of this equipment’s User Manual.
C4. Operations

This chapter provides information regarding:

- Configure the Delta Docking Station (DDS)
- Use DDS for Initial Cal Check
- Operation - General
- Start Up Procedure
- Snapshot of Delta User Interface
- Typical Test Procedure
- Ending Test Operations
- Battery Issues
- Additional Cal Check Information
- TIPS - Things You Should Know About the Delta

Safety First!

As emphasized in “C2. Safety Information,” it is a priority to keep the analyzer operator’s safety in mind at all times.

- Operators, before turning on the analyzer or using the Delta Docking Station, should review the safety procedures (“C2. Safety Information”).

Set Up and Use the Delta Docking Station

Background

The Delta Docking Station (DDS) provides several key functions:

- Supports an automatic or on-demand Cal_Check procedure
- Charges the “Main” battery located in the instrument’s handle
- Simultaneously charges a “Spare” battery in an auxiliary socket
- Provides control information so that both batteries’ status can be monitored
- Allows data communication from the Delta to a PC via a powered USB cable

The first phase for preparing to operate a Delta involves:

1. Configuring the DDS with its power and communication cables
2. Using the DDS to support the Delta’s initial:
 a. Start up sequence, and
 b. Cal Check procedure.

NOTE

A new instrument is shipped with two fully charged Li Ion batteries. Therefore, prior to initially using the analyzer, it is not necessary to charge a battery.

GO TO

- See Pages 45 and 50 for battery information, including charging, changing, determining status, and Hot Swap techniques.
- See Page 51 for Cal Check background information.
Configure Delta Docking Station

Configure DDS with this procedure:

1. Plug the AC power adapter’s line cord (1) into suitable AC outlet.
2. Plug the AC power adapter’s DC jack (2) into the 12 Vdc socket on the rear of DDS
3. [Option at this point: Powered USB cable assembly]
 - Insert connector B (3) into DATA port
 - Insert connector A (4) into USB port of PC
Use the Delta Docking Station for Charging Batteries

The Delta analyzer has a multi-purpose standard accessory: the Delta Docking Station or DDS.
In addition to providing an automatic Calibration Check, the DDS delivers two charging functions:
1. It charges the installed “Main” battery in the instrument’s handle.
2. Simultaneously, it charges a spare or “Dock” battery when its inserted into the special auxiliary charging socket.
Charge status is shown in real-time on the Delta’s display screen.
The second docked battery’s status is also shown by the battery icon located on the rear left side of the DDS.
(either “charging = red” or “full = green”)

Delta Docking Station Procedure for Battery Charging Functions:

1. Ensure that the DDS has DC power cable installed
 See page 44
 The icon lights are Off {1}
2. With Delta Off, place instrument in cradle.
 Take care that Analyzer Icon comes On (Green) {2}
 The main battery in the handle is charging although there is no indicator.
3. If Delta On, the Battery Status Screen appears
4. Place a spare battery in the auxiliary socket
 Battery Icon is On (Red - unless fully charged) {3}
5. Both batteries will charge; their real-time charge status is displayed.
6. When both batteries are fully charged, the Icons display Green. {4}

Delta Docking Station Procedure for Automatic Cal_Check

1. Ensure that the DDS has DC power cable installed
 See page 44
 The all Icon lights are Off {1}
2. With Delta On, place instrument in cradle.
 Take care that Analyzer Icon comes On (Green) {2}
 Battery Status screen is displayed.
3. Ensure that the Battery Status screen stays On.

NOTE: Do not exit this screen ---+ the automatic Cal_Check function will not work.
Use the Delta Docking Station for Startup - Initial Cal Check

1. Place analyzer into the Delta Docking Station cradle. Ensure that the Delta indicator light is ON. This signifies that the instrument is properly seated in the cradle.

2. Press analyzer’s I/O switch (>1 second to turn it ON.)

Radiation Safety NOTICE appears after a few seconds.

3. Read and respond to notice
 Tap START to acknowledge that you are a certified user.
 The UI begins its launch with the following messages:
 - Initializing System
 - Starting System
 - Loading Files

4. Unit displays a Test screen using the Mode last selected.
 4a. If the mode should be changed, go to Home screen.
 4b. Select the Mode button
 4c. Choose the desired Mode

5. Return to Test {now with your selected Mode}
 Note that message Cal Check Required is present.

6. Choose Tools icon:
 This launches Test Setup screen with Cal_Check button

7. Tap Cal_Check
 If necessary, unlock the Trigger with the icon at top of screen.
 Procedure begins immediately; it concludes in about 15 seconds.

8. Message Cal Check - Passed means you may begin testing.
 Message Cal Check - Failed will give error message, such as”! Wrong Count Rate”
 Re-try the procedure
 If unit fails repeatedly, contact InnovX service or your local distributor.
The Delta’s user interface is introduced by the startup Radiation Safety and Initialization screens. Main operations then revolve around the Home screen.
Typical Test Procedure

Background
Details of routine testing operations vary depending on the selected analysis mode. Some relevant modes for Delta XRF users are:

- **Alloy Modes**
 - Alloy Plus
 - Fast ID & Pass/Fail
 - Precious Metals

- **Mining Modes**
 - Two-Beam Mining
 - Mining
 - Car Catalyst

- **Soil Modes**
 - Environmental
 - Exploration

- **Consumer Goods**
 - RoHS
 - Consumer Products

For the test sequence (below) the instrument has:
- Mode selected (Soil 3 Beam), and
- Cal Check procedure successfully completed.

To conduct a typical test:
1. Remove the instrument from the Delta Docking Station. Place the measurement window flush against the sampling area. Ensure the sampling area is covered by the window.

2. Use one of these techniques to initiate the X-ray beam:
 a. Tap **Start Test (Green Arrow Icon)**, or
 b. Pull the trigger (toggles unit ON); can release the trigger during the test, or
 c. Pull-and-hold the trigger (deadman trigger function is enabled)

 This is a mandatory technique in Canada.

 Trigger options are configurable from:
 Setup > Trigger Hardware > Trigger Settings

 The Test screens are as follow:

 WARNING
 Do not point the unit at yourself or any other person during operation. Do not test small samples in your hand. Place them on a surface for testing.

 See C2, Safety Information, Pages 29-31 for examples of safe and unsafe testing techniques.
End of Day Operations

Save Results

When finishing testing for the day (or shift, or current session) InnovX recommends that test results be saved (e.g. exported) to a PC.

A necessary prerequisite is a DATA connection between the analyzer and PC.

This connection is made in one of two ways:
- Analyzer in DDS cradle — use the powered hub USB cable assembly (PN 103209 and PN 103210) from the DDS’ rear Data port to a USB port of the PC
- Analyzer NOT in DDS cradle — use the mini USB B to USB A (PN 101310) cable from the analyzer’s Data port to a USB port on the PC

The UI operational sequence is:
1. Navigate from Home > Results > Calendar
2. Select Year, Month, Day listing; it lists the total number of tests for the day
3. Select Tools, then Results Setup
4. Select the Export icon (button)
5. Choose the results to be exported
6. Name the export file (or accept default name)
7. Select Destination to save to
8. Tap the Export button

The file is exported.

Ending Test Operations

When testing and exporting are complete, the user has the following options:
- Turn off Delta with I/O switch or UI (see Exit Options procedure below); store unit in a secure location
- Place Delta in Docking Station and use the “Automatic” option:
 - Leave Delta powered ON;
 - Ensure that DDS is On (Delta ICON is lit);
 - Unit initiates Cal_Check after being idle for five minutes, then every ten hours thereafter.

See "Delta SW User Interface Guide" for the details (including options) of this sequence.

Exit Option Procedure from UI

User has three options:

- **Soft Reboot**
 - Restart OS and restart IX app.
- **Power OFF**
 - Turn analyzer off after confirmation.
- **Relaunch**
 - Restart IX app.
Battery Issues

1 — Changing a Battery

To CHANGE the battery:

1. Hold the instrument by the handle, upside down, so the bottom of the instrument base is pointing upward with the nose pointing away from the operator.
2. Pull the rubber latch and lift cover.
3. Remove the existing battery using the tab. A new instrument will not have an installed battery.
4. Insert the charged battery into the analyzer with the battery connectors facing to the left. The battery slot is keyed so that the battery can be inserted only one way.

2 — Battery Status

To TEST a Li-ion battery’s charge status:

EXTERNAL battery test —
1. Push the white button on the battery.
 The green lamps indicate the percent of charge, from less than 25% to 100%.
2. If a battery has a charge of less than 25%, use the Delta Docking Station to establish a full charge. See Page 45.

INTERNAL MAIN battery test —
1. The battery icon from any UI screen (upper right side) shows an approximate value of charge.
2. Tap the battery icon and a more precise charge percentage is displayed as a number.

3 — HOT SWAP for Delta Battery

A battery HOT SWAP capability is a standard feature with the Delta analyzer. An operator can remove and replace a battery without having to shut down, restart, or Cal Check.

When the battery is removed:
- A “Shutdown” status display gives the percentage of internal charge remaining.
- If the internal charge reaches 0, you have to re-start the unit with the I/O switch, after inserting a fresh battery.
- If red X-ray indicator lights flash, the battery voltage is too low.
Cal_Check Information

Cal_Check Facts

Question: What is involved with the Cal_Check procedure?

Answer: The analyzer:
- Collects a spectrum on a known standard (Alloy 316 Stainless Steel)
- Compares a variety of parameters to values stored when the instrument was calibrated at the factory.
- When comparisons are within pre-set tolerances, the unit determines that it remains properly calibrated.

General Facts include:
- Cal_Check must be performed when the analyzer requests the procedure.
- The Start button and trigger are disabled until a successful Cal_Check is achieved.
- You can run a Cal_Check at any time during InnovX software operation, except during a test.
- When Cal_Check is in progress, the x-ray indicator light assembly blinks. This indicates that the X-ray tube is energized and the filter wheel is operational. In addition, a status bar appears on the UI display, showing the percentage completion for the measurement.
- The Cal_Check procedure takes about 15 seconds.

Cal_Check Procedures

There are two separate techniques:
- In the test laboratory - Use the DDS to initiate “on-demand” procedure. Described above in “Use the DDS for Startup - Initial Cal Check”:
- There may also be an “Automatic” option, as follows:
 Leave Delta powered On and InnovX software running;
 Ensure that DDS is On (Delta ICON is lit);
 Unit initiates Cal_Check after being idle for five minutes, then every 10 hours thereafter.

- In the field - Use the Coupon (the procedure is described below)

1. Place the 316 stainless steel Cal_Check coupon on a flat surface. See C2. Safety Information, Page 29 for safety measures that must be observed.
2. Position the analyzer’s measurement window flush over the coupon.
3. With the Test Setup screen invoked, tap the Cal Check icon. There are now two techniques to choose from:
 - Tap the “Start Test” icon, or
 - Pull the trigger (or pull-and-hold if using “Deadman Trigger”)
4. The procedure takes about fifteen seconds.
5. When Cal_Check completes successfully, you may begin testing.
6. If Cal_Check fails, ensure that:
 - Coupon is positioned correctly.
 - X-ray indicator assembly is blinking during the procedure.
 - You have waited several seconds before starting the procedure.
7. If Cal_Check fails again,
 - Shut down the Delta software.
 - Shutdown and restart the analyzer.
 - Launch another attempt to Cal_Check.

If Cal_Check fails repeatedly, contact Innov-X Systems Customer Service or your local distributor. Contact information is available at appendix A6. Packing and Shipping.

NOTE
Improperly positioning the window over the coupon can result in a failure.
TIPS - or - things you should know about the Delta

System Information
To call information “About InnovX” tap the X (InnovX icon) in upper left of UI screen. This provides various firmware and software versions that are installed on the analyzer.

UI Screen Note
All User Interface screens have a time-out (power saving) feature that causes the screen to go blank after 45 seconds if the UI is not accessed or the unit is not moved. However, the analyzer is still running. Restore the screen by tapping it or by moving the instrument.

Battery Status Info #1
When you turn on the instrument and you may not be aware that the battery is low, the X-ray indicator (Red LEDs) flashes dimly and briefly. The unit will not turn ON. Swap out the battery.

Battery Status Info #2
The on-screen battery icon (in upper right corner of UI) shows “real-time” battery charge status in a graphical way. Tap this icon to receive a numeric value for battery charge level.

Delta Docking Station to Delta Analyzer: Contact Status
Keep the rubber boot attached to instrument when inserting it into the DDS. This helps ensure that the DDS contact pins are engaged.

The DDS analyzer icon (rear left corner) should be ON.

If the rubber boot is not available, and the analyzer icon remains OFF, use a small piece of padding under the handle to ensure contact.
C5. Alloy Analysis Modes

Alloy analysis for the Delta family includes:
- Wide range of modes and calibrations
- Outstanding performance for a variety of materials

There are five Alloy modes/calibrations:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Use with:</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOY</td>
<td>ALL Models</td>
<td>Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Hf, Ta, Re, Pb, Bi, Zr, Nb, Mo, Ag, Sn, Sb
Fundamental Parameters Analysis for metal alloys.
Alloy library including 300+ grade specifications, common tramp limits, including full editing capabilities.</td>
</tr>
<tr>
<td>ALLOY Plus</td>
<td>Premier and Standard Only</td>
<td>Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Hf, Ta, Re, Pb, Bi, Zr, Nb, Mo, Ag, Sn, Sb
PLUS Mg, Al, Si, P
Fundamental Parameters Analysis for metal alloys.
Optimized beam condition for extended light element performance.
Alloy library including 300+ grade specifications, common tramp limits, including full editing capabilities.</td>
</tr>
<tr>
<td>FastID</td>
<td>All Models</td>
<td>Spectral signature matching for alloy grade & chemistry calculation.**
Full library editing & alloy matching capabilities included.</td>
</tr>
<tr>
<td>Pass/Fail</td>
<td>All Models</td>
<td>Spectral signature or chemistry matching for alloy grades.**
Customer created library with min/max grade specifications.
Full library editing & alloy matching capabilities included.</td>
</tr>
<tr>
<td>Precious Metals Additions</td>
<td>All Models</td>
<td>ADDS Ir, Pt, Au, Rh, and Pd to Analytical Analysis calibration suite.**</td>
</tr>
</tbody>
</table>
Introduction to Alloy Analysis Modes

The Delta family of instruments currently presents six unique modes for alloy analysis. The core analytical analyzer modes/types are:

- **Alloy mode** - Classic (PIN detector based) type
- **Alloy Plus mode** - Standard (SDD detector based) type
 - Premium (SDD detector based) type

All three analyzer types can support additional alloy-oriented modes, such as:

- FastID
- Pass/Fail
- Precious Metals (No added details)

Alloy analysis utilizes a Fundamental Parameters (FP) algorithm to determine elemental chemistry. This method calculates chemistry from the spectral data, without the requirement of stored fingerprints. The Analytical FP calibration is done at the factory, and requires no user set-up or recalibration. The software also searches an alloy grade library to produce a grade match based on the calculated chemistry. Analytical mode can provide a grade ID and chemistry in as little as one second, with increased precision for longer test times.

Alloy mode/Classic type supports Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Hf, Ta, Re, Pb, Bi, Zr, Nb, Mo, Ag, Sn, Sb.

Alloy Plus mode /Standard type and Premium type supports light elements Mg, Al, Si, and P in addition to the core list of elements from the Alloy mode.

Standard and Premium units expand the Limits of Detection range permitting operators to analyze these light elements without a vacuum or helium purge requirement.

Both modes have a feature, Altitude Compensation, which automatically corrects calibrations based on barometric pressure.

Determination of Grade Identification:

Analytical modes utilize a Factory Grade Library consisting of a set of minimum and maximum values for each element in an alloy.

There is a SPECIFIC Alloy Factory Grade Library for EACH Delta model.

See appendix A8. Alloy Grade Libraries for a listing of the alloys that are contained in each Factory Grade Library.

Additionally, every analyzer is shipped with a “Tramp” library comprised of seven base alloys. These seven items with their min/max element values are increasingly valuable to fast and accurate sorting in Pass/Fail and FastID modes.

The libraries can be searched individually or together. All libraries, including each Factory Grade Library, can be edited by the user. However, InnoX strongly suggests that users NOT edit the Factory Grade Library. Instead, copy the Factory Grade Library to a USER library, then make any edits on it.
Match Number Concept

After calculating chemistry with the Fundamental Parameters algorithm, **Innov-X** compares the chemical composition values to grade tables stored in a grade library. The application calculates the value for a parameter called **Match Number**. This provides an indication of how close the measured alloy’s chemistry is to library values.

- The *lower* the Match Number, the *better* the match.
- A Match Number of 0 is an exact match, meaning that the calculated chemistry for all elements falls within the grade table specifications.

Match Issues

There are three Match determination possibilities provided within the Analytical modes:

EXACT MATCH

An unknown alloy is matched to one of the grades contained in the Grade Libraries, and a Grade ID appears on the Results screen. Often other grades are listed with their accompanying Match Numbers. The analyst has the opportunity to view their elemental chemistries and see how they differ from an exact match.

MULTIPLE MATCHES

In some cases, several grades are shown as possible matches. This can signify one of two conditions:

- There was not enough statistical information to definitively separate two or more alloys. The actual identification of the unknown alloy is one of the grades listed. Often increasing the testing time makes it possible to separate the alloys.
- There was sufficient statistical information, but the test sample did not meet any of the existing specifications with enough precision to cause an exact match identification.

NO MATCH

If no matches are found within the libraries, the words NO MATCH appear.

There are several causes for a NO MATCH result:

- The test sample does not meet any of the specifications in the Grade Library.
- The test sample is coated; Remove the coating by grinding, filing, or sanding and repeat the test.
- The testing time was too short.
 - Increase the testing time and measure the sample again.
- The Match Number is too low.
 - If possible, increase the Match Number.
Scrap and Recycling Features
Delta analyzers in Alloy or Alloy Plus modes support many new features to specifically enhance scrap processing by maximizing speed and accuracy.

Grade Match Messaging (GMM)
User or Yard Manager can assign pop-up messages to specific alloy grades

- Quick start for next test, or view the chemistry details with one click

Grade Match Messaging offers:
- Immediate sorting instructions
- Less operator training
- More efficiency and higher throughput

SmartSort
Automated sorting decisions that allow users to maximize speed and sorting accuracy.
Some features include:
- Specific grades set up to automatically extend testing time.
- Maximize efficiency for speed testing by automatically extending test time for light elements (Mg, Al, Si, P, S)
- Eliminate unnecessary long tests
Nominal Chemistry
Nominal Chemistry looks for ‘invisible’ elements, based on grade ID, including:
- Elements not tested under active beam, (like Al in Beam 1)
 —or—
- XRF invisible elements (like B or C)

Tramp Library
Analyzers with Alloy or Alloy Plus mode come pre-loaded with a tramp library based on industry standards.
- Operators may assign other “Tramp” elements with max tolerated concentration for individual elements in seven unique graded families.
- Analyzers can report tramp material (optionally) and simplify grade match by not counting small, expected amounts of tramp elements against the grade match.

See appendix A8. Alloy Grade Libraries for a discussion of the Tramp Library concept, including:
- How the InnovX Tramp Library works
- Practical advantages of the Tramp element approach
- List of seven Tramp Base Alloys
Test Sample Considerations

Coated or Painted Samples
XRF is a surface analysis technique, where X-rays penetrate a very short distance into most alloy samples. Therefore, the analyzer detects what is on the surface of an alloy, rather than what comprises the bulk of the material. If a material has been coated, plated, painted, or has had some sort of surface treatment, such as heat treating, it may be misidentified.

For example, a steel piece painted grey may show high concentrations of titanium from the paint, and may be misidentified as a titanium alloy. In another example, large amounts of metal dust or turnings on a surface may be detected by the analyzer.

To ensure proper identification of coated materials, grind an area slightly larger than the analyzing window to remove the coating. It is important to select the correct grinding material so as to not interfere with the analysis.

Do not use Silica for a Silicon analysis.

It may not be necessary to completely clean and polish all materials, however, remove obvious metal dust.

Mixed Samples, Heterogeneous Materials
Often finished metal pieces may consist of more than one type of metal. In addition, you may wish to measure mixed turnings, or an assortment of small pieces. In these cases, remember that the analyzer measures the entire area covered by the analyzing window and reports an average chemistry. For turnings, this is useful, as the analyzer provides an average composition. However, if two or more pieces of metal cover the window, the results is just an average reading, and may tell very little about the composition of one piece or the other.

When shooting metal pieces, or welds, ensure that only the metal of interest is covering the analyzing window.

Small and Irregularly Shaped Samples
To measure samples smaller than the analyzing window:
• Increase the testing time.
 — and —
• Maximize the material in contact with the window.

The precision of analysis for small parts measurements is reduced, as the signal from smaller samples is less than for samples that completely cover the window. If possible, analyze the largest, flattest side of an irregularly shaped object.

GO TO
• See A4. Typical Test Procedure for description of a Test sequence.
• See “Delta User Interface Guide” (PN 103202) for a complete description of the Innov-X application’s User Interface.
Introduction to FastID Mode (All Models)

FastID mode is designed to quickly identify an alloy. It uses an empirical calibration method known as a “type” calibration. It is most useful where the number of alloys to test is small and well known.

FastID is best suited for Positive Material Identification (PMI) and QA/QC applications. For example, where alloy producers or fabricators handle materials that may be very similar or where maximum user simplicity is a primary concern.

This mode offers:

- Simplified results (grade name only or less information on tramp elements).
- A narrow, customized grade library base upon stored spectral fingerprint reference standards.
- **Full chemical analysis based on reference standard assays.**
- Results which are the best combination of SPEED and ACCURACY.
- A Grade and Chemistry result in as little as one to two seconds.
- User selectable match criteria settings.
- Expansion of up to 500 additional alloy grades and assays (alloy chemistries) — password protected.
- Multiple independent grade libraries. You choose to search one or more libraries.
- All libraries are editable

How FastID works:

Prerequisite: The operator creates a “custom FastID fingerprint” library by testing an array of reference standards. This list spans the number of alloys for which he is interested.

1. Delta’s XRF process allows a test sample to create a spectral fingerprint.
2. Analyzer compares this spectral fingerprint to entries from library of many certified spectra, the “custom FastID fingerprint” library.
3. Analyzer finds the best spectral match to the sample spectra: thus identifying and reporting the matching alloy grade.
4. If concentration data has been entered for the standards, the instrument then calculates the sample's chemistry.

The reported chemistry data are an extrapolation from standard intensity data stored in the customer-generated fingerprint library.

The user gets a real time grade match and a precise report of the chemical composition of the sample.

NOTE

— Because FastID mode performs a spectral match to a library of reference standards, it is important that before testing, a “likely” stored reference standard be in the customer-created FastID fingerprint library.
Introduction to Pass/Fail Mode (All Models)

Pass/Fail mode is designed for high-throughput alloy sorting and quality control.

Mode Features

- All test samples are sorted by comparison to an operator-selected reference standard.
- Results are displayed as a PASS or a FAIL, depending on whether they match the reference standard.
- Pass/Fail criteria may be based on:
 - "quality of fit" to the selected spectral fingerprint
 - elemental chemistry.
- Pass/Fail ranges may be implemented for one or more elements.
- This mode offers a full range of options from the simple sorting of mixed loads in a recycling facility to QC on specific element(s) of the most complex superalloys.

Pass/Fail mode has two options: **Fingerprint and Chemistry**:

1. **Fingerprint Option**

 Select this method when the goal is to determine whether or not test samples are a specific grade.

 Fingerprint Pass/Fail and FastID use the same method to determine a match.

 Data from analyzed samples are compared to the reference standard fingerprint.

 If the differences between the fingerprints are small enough, the sample is judged to be of the same grade as the reference sample.

 This method requires:

 Only that the library contains a valid fingerprint for the reference standard.

2. **Chemistry Option**

 Select this method to determine whether the chemistries for specific elements fall within specified min/max grade specifications.

 Chemistry pass/fail process is:

 1. Analyzer uses the fingerprint method to determine whether the sample matches the reference sample.

 If it does not, it automatically fails.
 2. If Step 1 has a match, the alloy chemistry is calculated from assays stored for the standard fingerprint.
 3. The calculated chemistry for each element is compared to the values stored in a Grade Table.

 In order for a sample to pass, all the chemistries must be within “n” standard deviations of the min and max values specified in the grade table.

 Number “n” is specified by the user.

 This method requires three items:

 (1) a valid fingerprint, (2) assays for that fingerprint, and (3) Min/Max values saved in the library.
C6. Mining Modes

There are three Mining modes:

MINING
Use with: **ALL models**

- Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, As, Pb, Bi, Zr, Mo, Ag, Cd, Sn, Sb
(elements may be customized on request)
Fundamental Parameter based calibration for ore grading and percent-level analysis of **process bulk** samples. Suitable for measurement of percentage level analyte concentrations, 0.5% and greater.

2 BEAM MINING
Use with: **Premier and Standard Only**

- Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, As, Pb, Bi, Zr, Mo, Ag, Cd, Sn, Sb
(elements may be customized on request)
Mining mode optimized for SDD based systems to enhance **SPEED** and **LOD** for light elements.

CAR Catalyst
Use with: **All Models**

- Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Hf, Ta, Re, Pb, Bi, Zr, Nb, Mo, Ag, Sn, Sb
PLUS Rh, Pt, Pd
Accurate analysis of **bulk recycled catalyst** materials.

The Mining modes/types are:
- **Mining** mode - **Classic** (PIN detector based) type
- **2 Beam Mining** mode - **Standard** (SDD detector based) type
- **Beam Mining** mode - **Premium** (SDD detector based) type
- **Car Catalyst** mode - **All types**
These modes utilize a Fundamental Parameters algorithm which automatically corrects for inter-element results.

The units can analyze:

- *in situ* (directly on the ground),
- prepared soil samples (in sample cups)
- bagged samples

Best Practices

Check Standards

Measure a check standard after each Cal Check, and periodically throughout the day. This confirms that data continues to be as accurate as possible.

The standards provided with Delta instruments are contained in special XRF sample cups. These cups have film windows (through which the soil can be viewed and analyzed) on one side, and solid caps on the other side.

Sample Presentation

in situ testing

In situ testing is performed by pointing the analyzer at the ground. Clear any grass or large rocks away and hold the analyzer with the probe head front flush to the ground. Since dirt can accumulate on the analyzer window, wipe the window clean after each analysis. Ensure the window is not ripped or punctured.

Bagged or prepared sample testing

Analyze prepared samples in a sample cup, through its Mylar window. Place the instrument’s measurement window directly over the sample cup with the Mylar side up. Preparation considerations include:

- Avoid measuring very thin samples, as this can affect results. Prepare samples cups to contain at least 15 mm of packed samples.
- When analyzing bagged samples, ensure that sufficient sample material exists in the bag to completely cover the window with a sample thickness of a minimum of 15 mm.
- When using bags, cheaper bags (having thinner plastic walls) are better than more expensive ones (which have thicker plastic walls).

Optional Accessories

Accessories that can assist in Mining mode testing are:

- A-035: Soil Foot
- 990055: Soil Extension Pole
- A-020-D: Workstation - portable, fully shielded, closed beam test stand for bench-top or remote controlled testing.
- Trimble Xplorer Package

Typical Test Procedure

See “A4. Typical Test Procedure” for description of a Delta Test sequence.
Mining Mode Options

Test length in Mining Mode is user defined.

Factors

Mining modes allow you to create your own set of factors, focusing on particular elements of interest or correcting for matrix effects.

You can make several different Factor tables, allowing analysis of a variety of samples.

Setting Mining User Factors

Example:

A group of samples covering the full concentration range for each element of interest are identified. Each sample is homogenized and split. A portion of each sample is sent to an outside lab for analysis. The other portion is analyzed with the analyzer. For best results ensure that the samples are very well homogenized, and characterized, so the correlation is quite good.

Procedure:

Plot the data. Innov-X data must be on the X-axis, lab values on the y-axis.

Ensure that you use this order: Innov-X data on X-axis and lab data on the Y-axis.

Determine the linear best fit with both the slope and intercept for each element. The slope and intercepts for these graphs are entered directly into the analyzer. In many cases it is sufficient to enter just a correction for the slope as the intercept is almost zero. In others, enter the slope and intercept.

You can enter multiple sets of user factors for different applications, or different ore bodies. A group of factors is given a name, and then the factors are entered. The factor set can then be selected by name.
C7. Soil Modes

The Delta family currently supports two soil modes, Soil and 3 Beam Soil. Each mode has a possibility of two default element suites, Environmental and Exploration. Note that both calibration packages cannot reside on one instrument.

SOIL Environmental

Use with: All Models

K, Ca, S, P, Cl, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Hg, As, Pb, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ba
(elements may be customize on request)
Compton Normalization algorithm designed for achieving lowest Limit of Detection (LOD) possible for SOIL and BULK samples. PowerShot and SmartShot 3-beam modes included.

SOIL Exploration

Use with: All Models

K, Ca, S, P, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Hg, As, Pb, Bi, Se, Th, Rb, U, Sr, Zr, Mo, Ag, Cd, Sn, Sb
(elements may be customize on request)
Compton Normalization algorithm designed for achieving lowest Limit of Detection (LOD) possible for exploration samples. PowerShot and SmartShot 3-beam modes included.

Soil Mode Beam Selection

SmartShot Beam Mode:
Uses a single incident bean setting (Transition Metals) optimized to deliver ultra fast results with solid LOD performance across the periodic table. SmartShot offers excellent sensitivity in the fastest testing time possible.

PowerShot Beam Mode:
Offers a fully optimized, multi-beam analysis method that provides exceptional LODs for all elements analyzed - heavy metals, transition metals, and light elements. PowerShot can be used to analyze the full element range, or to focus in on a particular element of interest, such as Cr, Cd, Ni, or Cu. Any or all of the following beams conditions may be selected:

- Heavy Elements
- Transition Metals
- LEAP (Light Elements)
Use this procedure to configure beam selections:

- From the Mode Setup screen, select Test Conditions.
- Select the LEAP option.
- Configure one or more Powershot(s). Note that multiple beams may be chosen. Press Save to return to soil testing.

Best Practices

Check Standards

Measure a check standard after each standardization, and periodically throughout the day, for a minimum of one minute. Elemental concentrations for elements of interest, in the range expected at the site, plus or minus the error on the reading, should be within 20 percent of the standard value. *A2.Soil Testing* describes recommended quality assurance considerations in detail.

The standards provided with the analyzer are contained in XRF sample cups. These containers have a film window (through which the soil can be viewed) on one side, and a solid cap on the other side. Always measure samples through the film window.

Sample Preparation

Preparation considerations include:

- Avoid measuring very thin samples, as this can affect results. Prepare samples cups to contain at least 0.5” (usually 4-8 grams) of packed samples.
- When analyzing bagged samples, ensure that sufficient sample material exists in the bag to create a a sample thickness of a minimum of 15 mm for a spot size that is larger than the analyzer’s measurement window.
- When using bags, cheaper bags (having thinner plastic walls) are better than more expensive ones (which have thicker plastic walls).
C8. Consumer Goods Analysis Modes

There are two consumer goods modes:

RoHS

RoHS regulated elements: Cr, Hg, As, Pb, Br, Cd,
PLUS Cl, Ti, Fe, Co, Ni, Cu, Zn, Sn, Sb, Ba

Analysis software for measurement of restricted elements in electronics and consumer goods. Auto-compensations built in for metal, polymer, and mixed matrices.

Consumer Products

Analysis software designed for CPSIA & Prop 65 testing. Pb content displayed as Pass/Fail based on regulated limits.

Additional elements Cl, Ti, Cr, Fe, Co, Ni, Cu, Zn, Hg, As, Br, Cd, Sn, Sb, Ba also reported.
Introduction to RoHS Mode

Toxic metals in consumer electronics are the focus of EU regulations that have worldwide ramifications. These new directives currently include:

- **Restriction of Hazardous Substances (RoHS)**
 - Designates maximum allowable levels of Pb, Cd, Cr\(^6+\), Hg and certain Br-containing flame retardants (PBB and PBDE) in new electrical and electronic equipment sold into the EU.

The limits for RoHS elements are:
- <0.1% Pb, Cr\(^6+\), Hg, Br (as flame retardants, PBB and PBDE)
- <0.01% Cd

The Innov-X analyzer is a screening tool for RoHS Compliance. It is used to:

- Directly analyze the amount of toxic metals in electronics,
- Identify quickly whether a plastic is made of or contains:
 - PVC
 - A brominated flame retardant.

XRF measures total elemental composition, regardless of speciation of the element. Therefore, it reports:

- Total chromium including the concentration of hexavalent chromium plus any other forms of Cr.
- Total bromine, however cannot distinguish the type of brominated flame retardant present in analyzed materials.

In order for XRF to be quantitative, samples must be:

- Homogeneous
- Have a certain minimum sample thickness
 - Five (5) mm for polymers and light alloys
 - Fifteen (15) mm for liquid samples
 - One (1) mm for other alloys

If samples are heterogeneous, too thin, or too small, only qualitative screening is possible.

The IEC-ACEA (International Electro-technical Commission - Advisory Committee on Environmental Aspects) recommends XRF screening.

Test Overview

The Delta analyzer controlled by InnovXPC application software (in RoHS mode) automatically executes a test sequence to determine:

- Whether a sample is an alloy, polymer, or mixed.
 - “Mixed” indicates heterogeneous samples consisting of both polymer and alloy, such as wires or circuit boards.
- Whether each RoHS element passes, fails, or is inconclusive when compared to a set of stored criteria.
 - These criteria are either those recommended by the IEC, or ones added by the user.

The sequence begins with the instrument utilizing tube settings appropriate for analyzing a polymer sample. The following logic applies:

- If the sample is determined to be a polymer or mixed, the test continues, and a calibration based on a polymer matrix is used.
- If the sample is found to be a metal alloy, the analyzer switches to a secondary test, using an alloy matrix calibration, in order to determine correct alloy concentrations.
Check Standards

Innov-X Systems recommends that a check standard be measured after each Cal Check procedure, and periodically throughout the day. Two certified standards are provided for verification.
- At least one standard should be measured for a minimum of two minutes.
- Concentrations for target elements (plus or minus the error on the reading) should be within 20% of the standard value.
- Standards provided are contained in XRF sample cups with a Mylar window (through which the plastic pellets can be viewed) on one side, and a solid cap on the other side.
- Samples should be measured in the sample cup, through the Mylar window.

Sample Presentation

Since many pieces of plastic analyzed for ROHS compliance are very small, take care to measure them in a safe and accurate manner. See the IEC-ACEA recommendations for minimum thickness of test samples.

IEC Quantitative Screening Requirements

Important Current Issues

- At this User Manual’s release date (May, 2010), the IEC requirements (including limits and exemptions) have not been formally accepted. A timetable for acceptance has not been established.
- Users must be aware that the information in Figure 1 concerning RoHS screening limits has been extracted from proposed/draft IEC-ACEA documentation.
- Innov-X strongly advises users to have their own compliance departments determine the current status of the requirements that they must meet.
Elemental Range/Limits for RoHS Compliance

<table>
<thead>
<tr>
<th>Elements</th>
<th>Polymer Materials</th>
<th>Metallic Materials</th>
<th>Electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>P ≤(70-3s) < X < (130+3s)</td>
<td>F</td>
<td>P LOD < X < (150+3s)</td>
</tr>
<tr>
<td>Pb</td>
<td>P ≤(700-3s) < X < (1300+3s)</td>
<td>F</td>
<td>P ≤(500-3s) < X < (1500+3s)</td>
</tr>
<tr>
<td>Hg</td>
<td>P ≤(700-3s) < X < (1300+3s)</td>
<td>F</td>
<td>P ≤(500-3s) < X < (1500+3s)</td>
</tr>
<tr>
<td>Br</td>
<td>P ≤(300-3s)</td>
<td>X</td>
<td>P ≤(250-3s)</td>
</tr>
<tr>
<td>Cr</td>
<td>P ≤(700-3s)</td>
<td>X</td>
<td>P ≤(500-3s)</td>
</tr>
</tbody>
</table>

Figure 1: Proposed Screening Limits for RoHS Elements
Grade Definitions for Screening

<table>
<thead>
<tr>
<th>Grade</th>
<th>Proposed Screening Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS</td>
<td>Results for ALL elements are lower than the lower limits shown in Figure 1.</td>
</tr>
<tr>
<td>FAIL</td>
<td>Result for ANY element higher than the higher limits shown in Figure 1.</td>
</tr>
<tr>
<td>INCONCLUSIVE</td>
<td>Result of the quantitative analysis, for any of the elements Hg, Pb, or Cd, is in the region defined as intermediate, OR if the result of the elements BR and Cr is higher than the higher limits shown in Figure 1, the analysis is inconclusive. Additional investigation must be performed.</td>
</tr>
</tbody>
</table>

GO TO

- See *A4. Typical Test Procedure* for description of a Test sequence.
- See “*Delta User Interface Guide*” (PN 103202) for a complete description of the Innov-X application’s User Interface.
Introduction to Consumer Products Mode

Background

This mode is dedicated to testing items for Lead (Pb) content.

The result output is Pass/Fail based on the regulated limits that are specified in:

- CPSIA (the Consumer Products Safety Improvement Act of 2008)
- Prop 65 - refers to California Proposition 65 enacted in 1986

Additional elements that may be reported are:
Cl, Ti, Cr, Fe, Co, Ni, Cu, Zn, Hg, As, Br, Cd, Sn, Sb, Ba

Regulatory limits vary with the governing body, state-to-state, and country-to-country. European Union nations generally use the RoHS limits and testing practices.

The regulatory limits for Pb are:
- CPSIA: 300ppm currently, but going to 100ppm
- RoHS: see Table 1.0 on Page 70

GO TO

- See A4. Typical Test Procedure for description of a Test sequence.
- See “Delta User Interface Guide” (PN 103202) for a complete description of the Innov-X application’s User Interface.
A1. Overview: X-Ray Fluorescence (XRF) Spectrometry

Basic Theory

Although most commonly known for diagnostic applications in the medical field, x-rays are the basis of many powerful analytical measurement techniques, including X-ray Fluorescence (XRF) Spectrometry.

XRF Spectrometry determines the elemental composition of a material. This method identifies elements in a substance and quantifies the amount present of those elements. An element is defined by its characteristic X-ray emission wavelength (λ) or energy (E). The amount of an element present is determined by measuring the intensity of its characteristic line.

All atoms have a fixed number of electrons (negatively charged particles) arranged in orbitals around their nucleus. The number of electrons in a given atom is equal to the number of protons (positively charged particles) in the nucleus. In the classical Periodic Table of Elements, the Atomic Number is specified by the number of protons. Each Atomic Number is assigned an elemental name, such as Iron (Fe), with Atomic Number 26.

XRF Spectrometry typically utilizes activity in the first three electron orbitals, the K, L, and M lines, where K is closest to the nucleus. Each electron orbital corresponds to a specific and different energy level for a given element.

In XRF Spectrometry, high-energy primary X-ray photons are emitted from a source (X-ray tube or radioisotope) and strike the sample. The primary photons from the X-ray source have enough energy to knock electrons out of the innermost, K or L, orbitals. When this occurs, the atoms become unstable ions. Electrons seek stability; therefore, an electron from an outer orbital, L or M, moves into the newly vacant space at the inner orbital. As the electron from the outer orbital moves into the inner orbital space, it emits an energy known as a secondary X-ray photon.

This phenomenon is called fluorescence.

The secondary X-ray produced is characteristic of a specific element.

The energy (E) of the emitted fluorescent X-ray photon is determined by the difference in energies between the initial and final orbitals of the individual transitions. This is described by the formula $E=hc/\lambda$, where h is Planck's constant; c is the velocity of light; and λ is the characteristic wavelength of the photon.
Creating a Secondary X-ray - Photon Fluorescence

Wavelengths are inversely proportional to the energies; they are characteristic for each element.
For example, the Ka energy for Iron (Fe) is about 6.4keV. The number of element-specific characteristic X-rays produced in a sample over a given period of time, or the intensity, is measured. This determines the quantity of a given element in that sample.

Typical spectra for EDXRF Spectrometry appear as a plot of Energy (E) versus the Intensity (I).
History

Timeline for XRF Spectrometry

- Wilhelm Roentgen discovered X-rays in 1895.
- XRF research and development continued, especially during WWII. Critical developments in the aircraft, automotive, steel, and other metals industries increased the need to identify alloys quickly and reliably.
- The first commercial XRF Spectrometers became available in the early 1950’s. These systems were based on Wavelength Dispersive (WD) XRF technology.
 - The characteristic wavelength of an element was measured one element at a time.
 - WDXRF systems were useful for elemental analyses, however, the equipment had the following properties:
 - Large size
 - High initial cost
 - Required highly skilled operators to use and maintain them.
- In the late 1960’s, Energy Dispersive (ED) XRF technology emerged as a viable commercial choice:
 - EDXRF measured the characteristic energy of an element.
 - Improvements in solid state detectors offered better energy resolution of the signal.
 - Had potential to collect and display information on all of the elements in a sample at the same time.
- Many of the early EDXRF systems used radioisotopes for excitation. They had the following properties:
 - Required changing sources to determine all the elements of interest.
 - Did not easily resolve multiple elements in a single analytical run.
- The current state-of-the-art in EDXRF is the result of
 - Advancements in technology (particularly X-ray tubes, solid-state components, electronics, computers, software)
 - Application of the technology by instrument manufacturers, research scientists, engineers, and industrial users.
- Now a mature technology, XRF Spectrometry is routinely used for R&D, QC, production support, and regulatory compliance.
Elemental Analysis

Investigators involved with elemental analysis generally have two working instrument techniques — *Wet Chemistry* and *XRF Spectrometry*. They are compared operationally as follows.

Wet Chemistry

Important considerations are:

- Instrument techniques are *time-consuming*.
 - Often takes twenty minutes to several hours for specimen preparation and analysis.
- Specimen is *destroyed*.
- Often necessary to employ *concentrated acids* or other *hazardous materials*.
- Requires *disposal* of waste streams generated during the analytical process.
- Relatively *high cost* per sample.

However, wet chemistry instrument techniques are necessary if the primary measurement requirement involves elemental concentrations in the PPB (or lower) range.

XRF Spectrometry

Important considerations are:

- Easily and quickly identifies and quantifies elements over a wide dynamic concentration range, from PPM levels up to virtually 100% by weight.
- *Does not destroy* the sample.
- Overall sample turnaround time is *fast*.
 - Requires little, if any, specimen preparation.
 - Often results are available within seconds, minutes for some details.
- Relatively *low cost* per sample.

Interferences

All elemental analysis techniques experience chemical and physical interferences. They must be corrected or compensated for in order to achieve adequate analytical results.

Wet Chemistry Issues

Most suffer from interferences that are corrected only by extensive and complex specimen preparation techniques.

XRF Spectrometry Issues

The primary interference is from other specific elements in a substance that can influence (matrix effects) the analysis of the target element(s) of interest.

However, this interference style is well known and documented. *Both* types of analyzer techniques benefit from (a) instrumentation advancements, and (b) mathematical corrections in the system's software.

In certain cases, the *geometry* of the sample can affect XRF analysis.

- This is compensated for by:
 - Grinding or polishing the sample
 - Pressing a pellet
 - Making glass beads
Quantitative analysis

XRF Spectrometry supporting quantitative analysis typically employs one of two software applications:

- **Empirical Methods**
 Uses calibration curves derived from standards similar in property to the target unknown sample.

- **Fundamental Parameters (FP)**
 FP is frequently preferred because it allows elemental analysis to be performed without standards or calibration curves. The analyst can use the system immediately.

 Modern computers support this no-standard mathematical analysis, FP, accompanied by stored libraries of known materials. These systems quickly determine not only the elemental composition of an unknown material, but even identify the unknown material itself.

EDXRF Spectrometers

An EDXRF instrument typically has three major subsystems:

1. **Excitation Source**
2. **Spectrometer/ Detector**
3. **Data Collection/ Processing Unit**

Three Subsystems of EDXRF Analyzer

EDXRF analyzers are mechanically very simple; there are no moving parts in the excitation and detection subsystems. However, a bench-top analyzer can have moving parts. When compared to WDXRF systems, EDXRF systems exhibit the following attributes:

- Ease of use
- Rapid analysis time
- Lower initial purchase price
- Substantially lower long-term maintenance costs

EDXRF analysis equipment is useful for many applications, including:

- Environmental analysis
- RoHS/WEEE compliance
- Scrap alloy sorting
- Forensic science
- Archaeometry
A2. Soil Testing

This appendix explains usage of all of the company’s hand-held portable analyzers with the Soil or 3 Beam Soil mode option installed. This document offers instructions/procedures and regulations, as well as useful reference material, regarding:

- Portable XRF equipment usage in accordance with accepted methods.
- Basic overview of the technique of x-ray fluorescence (XRF).
- Appropriate data quality assurance protocols.
- Sample preparation steps for operators analyzing prepared soil samples.
- Tables of certified values for selected standards.

If LEAP mode is enabled, refer to configuration help in PN 103202.

Section 1: Commonly Accepted Methods for Field Portable XRF

A commonly accepted method is shown: Field Portable XRF Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment.

Features of this method are:

- It is a field screening method, for analysis of in-situ or bagged samples.
- The method provides basic quality assurance methods, including calibration verification, determination of instrument precision, accuracy and limit of detection.
- The method recognizes that some XRF instruments do not require site-specific calibrations by the operator, that is, the factory calibration provides appropriate data quality.
- The method recommends that a minimum of 5-10% of samples tested by XRF be confirmed by an outside laboratory, using a total-digestion EPA analytical reference method.

The purpose of this method is NOT to replace laboratory analysis.

There are two primary sources of error in assessing a site for metal concentration: Analytical error and Sampling error.

Analytical Error

The error in the analysis of any one sample by whatever technique is used, for example XRF, ICP, or AA.

Sampling Error

This arises when too few samples are collected and tested.

In this case an incomplete picture of the extent of metals contamination may be obtained. Although any one sample may be analyzed with very high analytical accuracy, measuring too few samples may result in contamination plumes being mis-judged in size, or depth into the soil. In extreme cases contamination can be missed entirely.

Methods have been developed to reduce Sampling Errors by increasing the number of samples measured. In general, a large number of screening-level measurements provide a better characterization of contamination than a small number of measurements produced by sample removal and analytical analysis. A large number of in-situ samples provide detailed data on contamination profiles, depth (provided surface soil is moved aside), and approximate contamination levels. Portable XRF can provide results with a high degree of analytical accuracy on any given sample.
Section 2: Overview of Field Usage:

Field portable XRF is generally used in three ways to test for metals in soil:

IN-SITU SOIL TESTING:
The XRF is placed directly onto the ground for soil testing. Operators remove any plant growth and foreign objects so that the analyzer probe is flush to the soil.

BAGGED SOIL SAMPLE TESTING:
A soil sample is collected in a thin plastic bag (i.e. a Baggie) and testing occurs directly through the Baggie. Except for a few elements - namely Cr, V and Ba - testing through the thin plastic bag has little effect on the test result. However, results for Cr, V and Ba will be lower by 20-30%.

PREPARED SOIL SAMPLE TESTING:
Prepared sample testing assures the operator of the maximum possible accuracy. Prepared sample tests require a sample to be collected, dried if necessary, sieved and ground into a powder. The prepared sample is then placed into a baggie or XRF cup for analysis.

Sample prep procedures are provided on Section 8: Sample Prep Procedures and Testing Protocols on page 130.

ALL analytical methods require a uniform, homogenous sample for the best results. XRF is no different!

The methods generally used, namely in-situ and bagged sample testing, are considered field-screening methods. Although a field-screening method, in-situ testing is a valuable technique because it generates a great deal of data very quickly. Prepared soil samples generally offer the best accuracy, albeit with several minutes of sample preparation required per sample.

Subsection 2-A: Data Quality Objectives
The objective of testing is generally to determine the mixture of in-situ versus prepared sample testing. It is important to understand your data quality objectives (DQO) in order to determine the appropriate mix of field screening and prepared sample testing.

In-situ testing usually provides only screening-level data quality.

This is because analytical testing always requires a uniform, homogeneous sample matrix. A laboratory achieves this by digesting the sample into a hot acid before analysis. Testing directly on the ground does not ensure that uniformity is met.

Preparing a sample provides a uniform sample and likely better analytical data quality, although several minutes of testing time is required.

Most portable XRF operators use a mixture of in-situ and prepared sample testing. The exact mixture of in-situ and prepared sample testing depends upon the goals of the soil testing. The examples below serve as guidelines.
Example 1: Initial site investigation to provide detailed contamination data with efficient use of laboratory analysis costs.

PROBLEM:
The site needs to be assessed for metals contamination. Little information is available about what metals are present, likely contamination levels or geographic profile of contamination.
The goal of testing is to determine what metals are present at what levels, both in area and in depth into soil. Additionally, testing will locate possible contamination plumes and/or possible sources of contamination.

RECOMMENDED TESTING PLAN:
This example uses predominately in-situ testing. The analyst will perform in-situ testing, and gather samples into plastic bags for XRF analysis. A testing grid should be established in two or three dimensions, every several feet. XRF tests can be taken at each location or bagged samples can be collected from each location for later analysis. The in-situ data for each element analyzed may be plotted in a 2-dimensional grid (X, Y coordinates versus elemental concentration) to profile a site. These concentration profiles are ideal for showing contamination patterns, boundaries and plumes. Combining this data with historical use data from the site often allows the operator to deduce sources of contamination. Obtaining this level of geographic data with purely laboratory analysis would produce excessive analytical costs.
Prepared sample analysis should also be done to confirm the regions where in-situ data indicates low or non-detected levels of metal contaminant. There is little need to prepare areas where in-situ testing indicates high concentration levels.

Innov-X recommends this procedure:
For locations where in-situ tests indicate low or non-detected concentrations, calculate the total number of in-situ tests, collect 5% of this number of tests from the various locations. Prepare these samples according to instructions on “Section 8: Sample Prep Procedures and Testing Protocols on page 130.” Use these prepared samples to confirm the findings of the in-situ testing. Send a subset of these prepared samples to a laboratory for confirmatory results.

COST JUSTIFICATION:
To adequately characterize a site may require 100-200 samples/acre to be sure the contaminated areas are firmly established. This work may be done with in-situ testing to generate laboratory savings of $5,000 - $10,000/acre depending upon the number of elements being analyzed. The cost reduction in off-site analysis often justifies the price of the XRF.

Example 2: Monitor remediation efforts and assure site meets clearance levels before contractors leave the site.

GOAL:
Minimize remediation costs by only treating contaminated soil, and obtain immediate verification that various site locations meet clearance objectives.
RECOMMENDED TESTING PLAN:
This type of project uses a lot of both in-situ and prepared sample testing. Use in-situ testing to thoroughly delineate contamination regions in both area and depth. To determine depth profiles, test surface soil, remove at least 1-2’, and retest. Repeat this step as necessary to profile contamination depth to guide remediation activities (XRF is a surface technique and only analyzes the first few mm of soil sample). As part of clearance, collect several samples from cleared area. Prepare samples according to “Section 8: Sample Prep Procedures and Testing Protocols” on page 92. Test with portable XRF.
If XRF indicates that concentration levels are:
- In excess of clearance requirements, then continue remediation efforts.
- Below clearance requirements, then discontinue remediation efforts, and send a subset of the samples to an analytical laboratory to confirm results. Most operators safely assume that the cleanup requirements have been met for the elements in question, but await final analysis from the laboratory.
If XRF lists concentration levels as non-detected, but the detection level reported exceeds clearance requirements, send samples to a laboratory for final results.
Cost Justification: In-situ results are used to guide remediation efforts, in order to obtain maximum efficiency. Efficiency is produced because contamination boundaries are firmly established, thus avoiding remediation efforts with clean soil. Prepared sample testing is used to assure that clearance requirements are met on-site in near real-time (pending laboratory confirmation). Costs savings are generated by avoiding clearance failures. The contractors can leave the site earlier and will not be called back to the site for additional cleanup.

IMPORTANT NOTE:
Never clear a site based solely on in-situ testing. Always use well-prepared samples to make a clearance decision.

Example 3: Minimize volume of hazardous waste for treatment or disposal.

GOAL:
For some cleanup projects, the cost of soil disposal in a hazardous waste landfill is much greater than disposal in a standard landfill. Testing soil samples with XRF may minimize the amount of clean soil that is inadvertently shipped to a hazardous-waste landfill.

RECOMMENDED TESTING PLAN:
This example is almost entirely based on prepared sample testing. Representative samples are removed from the soil being hauled to landfill. Obtaining an accurate analysis of the samples is crucial for making a hazardous versus non-hazardous determination. For this reason, prepared sample testing is strongly recommended.

IMPORTANT NOTE:
These types of samples are subject to Toxicity Characteristic Leaching Procedures (TCLP) for the landfill determination. In general, 20 times the XRF result should be less than the allowable limit for the metal in question. Please contact Innov-X Systems for more details on testing samples versus TCLP regulatory requirements.
Section 3: Quality Assurance

Quality assurance is detailed for both the proper use of the analyzer and for verifying the data quality of in-situ testing. All operators should perform the QC procedure, regardless of their data quality objectives. There must be strict requirements about quality assurance. Additionally, Innov-X recommends that operators verify the data quality of in-situ test results, if they are using in-situ data to guide their reporting or remediation decisions. Procedures are listed below:

Proper verification of instrument operation

Quality assurance here consists of testing known standards to verify calibration, as well as testing blank standards to determine limits of detection and to check for sample cross-contamination or instrument contamination. We recommend a detailed procedure, which is provided here in abbreviated form.

Components of instrument QC:

- An energy calibration check sample at least twice daily
- An instrument blank for every 20 environmental samples
- A method blank for every 20 prepared samples
- A calibration verification check sample for every 20 samples
- A precision sample at least one per day
- A confirmatory sample for every 10 environmental samples

Energy Calibration Check: The Innov-X analyzer performs this automatically; this is the purpose of the standardization check when the analyzer is started. The software does not allow the analyzer to be used if the standardization is not completed.

Instrument Blank: The operator should use the SiO₂ (silicon dioxide) blank provided with the analyzer. The purpose of this test is to verify there is no contamination on the analyzer window or other component that is seen by the x-rays. We recommend an instrument blank at least once per day, preferably every 20 samples. For either in-situ or prepared-sample testing, the operator should just test the SiO₂ blank to be sure there are no reported contaminant metals.

Method Blank: The purpose of the method blank is to verify that cross-contamination is not introduced into samples during sample preparation. We recommend following the sample preparation procedures with clean SiO₂ once very 20 prepared samples. This QC step is not required if the operator is not preparing samples.

Calibration Verification: Innov-X provides standard reference samples for calibration check by operator. The operator should perform a two minute test on a standard. The difference between the XRF result for an element and the value of the standard should be 20% or less. Calibration Verification should be performed upon instrument startup and periodically during testing.

NOTE

Innov-X recommends a calibration check every 4 hours. Some users make a calibration check every 20 samples. Reference standards are generally applicable for Pb, As, Cr, Cu, Zn. Innov-X provides additional reference standards for Priority Pollutant metals including Cd, Se, Ag, Hg, Ag, Ba, Sn, Sb, and Ni.

Precision Verification: It is good practice to make a minimum of one precision sample run per day by conducting from 7 to 10 replicate measurements of the sample. The precision is assessed by calculating a relative standard deviation (RSD) of the replicate measurements for the analyte. The RSD values should be less than 20 percent for most analytes, except chromium, for which the value should be less than 30 percent.
Confirmatory Sample: It is recommended that one confirmatory sample is run for every 10 samples collected. It is good practice to have confirmatory samples collected from the same sample material that is analyzed on site, but are sent to an off-site laboratory for formal analysis. The purpose of a confirmatory sample is to judge the accuracy of the data obtained by analysis on site and to allow corrections, if necessary.

Important Notes about confirmatory samples:
Innov-X always recommends that customers compare prepared-sample results to laboratory results. To do this, collect and prepare a sample following the protocols shown on “Section 8: Sample Prep Procedures and Testing Protocols” on page 92. Take a subsample and submit to the laboratory for analysis. The single largest error in XRF analysis is lack of sample preparation. For the best comparison, always use prepared samples.

Determining data quality of in-situ testing:
For operators relying extensively on in-situ testing, it is important to determine the data quality of this testing at a given site. This protocol is not intended for every sample, but rather for a small percentage of samples considered representative of the site. If the operator can demonstrate that quantitative data is achieved with little or no sample preparation, then the site characterization will be completed much more quickly but correctly.

For example, an operator may be able to demonstrate that the XRF result changes considerably when samples are passed through a 2 mm sieve, but that XRF results do NOT change appreciably upon finer sieving. In this case, the operator can conclude that good XRF data is achievable with only 2 mm sieving. Sieving only to this level requires far less time than a more robust sample preparation.

A protocol to determine the appropriate level of sample preparation is the following:
1. Delineate a region of soil approximately 4” x 4”.
2. Perform several in-situ tests in this area, or collect the top (approximately) quarter inch of soil from this region, bag the soil, test through the bag. In either case, average the results.
3. If you did not bag the in-situ test sample, collect the top (approximately) quarter inch of soil from this region and sieve through the 2 mm sieve provided. Otherwise sieve the bagged sample used for the in-situ test. Thoroughly mix the sieved sample, and place some of the sieved material into an XRF cup, and perform a test of this sample.
4. If the results of this prepared sample differ by:
 • Less than 20% with the average in-situ result, this indicates the soil in this region is reasonably homogeneous. The data quality in this case is probably at the semi-quantitative level, rather than just screening data.
 • More than 20%, this indicates the soil is not very homogeneous, and there are serious particle size effects affecting your in-situ measurements. In this case, sieve the sample through the ~250 m sieve. Mix this sample and place a sub-sample into an XRF cup for testing. If this result differs from the previous by less than 20% then this indicates that at a minimum the 2 mm sieving is necessary to achieve higher data quality. If this result differs by more than 20% from the sample sieved through 2 mm, then particle size effects are still affecting the XRF result. In this case samples should be sieved through 125 μm to assure data quality at the quantitative level.
Section 4: Calibration for Innov-X Portable XRF

The Innov-X analyzer can run three different calibration methods, described below.

COMPTON NORMALIZATION:
In nearly all cases, customers use the Compton Normalization method. This method (recognized in EPA 6200) offers speed, ease of use, and generally good accuracy for concentration ranges from the ppm level up to 2-3% concentrations. As most field-testing is seeking to remediate or locate environmental contaminants, the upper limit of the calibration (2-3%) is generally not a limitation.

FUNDAMENTAL PARAMETERS (FP):
If customers do require a calibration up to 100% concentration (i.e. a pure element), then Innov-X recommends they also include the Fundamental Parameters (FP) software module with the analyzer. The FP module may be added at time of purchase or as an upgrade at any later date.

EMPIRICAL CALIBRATION:
In this case, customers run standards to generate calibration curves for various elements in specific soil matrices. With a well-prepared sample, the empirical method generally yields the most accurate result. In our experience, the accuracy gains going from Compton Normalization to Empirical Mode are small and not worth the extra effort in setting up calibration curves.

The empirical calibration module is an optional software package, available for an upgrade fee at the time of purchase, or as an upgrade at any later date.

NOTE
In general, customers do not need to calibrate Innov-X analyzers for soil testing. The analyzer is delivered with a factory calibration, generally based upon the Compton Normalization (CN) method. The CN method has been proven over the past several years to provide a robust calibration generally independent of site-specific soil matrix chemistry.
All customers should follow the QC procedure described in Section 3, which includes a check of the calibration.

CAUTION
The greatest source of error for in-field XRF analysis of soil is lack of adequate sample preparation, thus there is little gained in developing a sophisticated empirical calibration if the operator does not grind and homogenize the all measured samples.

Calibration Requirements:
The concentration of an element in a soil sample is well-described by the formula:

\[w_i = \frac{k_i}{M(Z,i)} I_i \]
where:

- \(k_i \) = calibration constant for element \(i \)
- \(\omega_i \) = concentration of element \(i \) - the quantity being measured
- \(I_i \) = measured x-ray intensity from element \(i \)
- \(M(Z,I) \) = Soil matrix value

The factory calibration determines the value of the calibration constants \(k_i \) for each element, and a typical value \(M(Z,I) \). The calibration method - either CN, fundamental parameters, or empirical - performs the necessary corrections to the value \(M(Z,I) \) that are important for the site-specific soil chemistry. The XRF analyzer uses the measured intensity of each element’s fluorescence from the sample, and the calibration data, to produce elemental concentrations.

COMPTON NORMALIZATION CALIBRATION:

The Compton Normalization method calibration consists of the analysis of a single, well-characterized standard, such as an SRM or SSCS. The standard data are normalized to the Compton peak. The Compton peak is produced from incoherent backscattering of X-ray radiation from the excitation source and is present in the spectrum of every sample. The matrix affects the way in which source radiation is scattered off the samples. This scatter is directly related to the intensity of the Compton peak. For that reason, normalizing to the Compton peak can reduce problems with matrix effects that vary among samples. Compton normalization is similar to the use of internal standards in analysis for organic analytes.

FUNDAMENTAL PARAMETERS CALIBRATION:

The fundamental parameters (FP) calibration is a standardless calibration. Rather than establishing a unit’s calibration curve by measuring its response to standards that contain analytes of known concentrations, FP calibration relies on the known physics of the spectrometer’s response to pure elements to set the calibration. Built-in mathematical algorithms are used to adjust the calibration for analysis of soil samples and to compensate for the effects of the soil matrix. The FP calibration is performed by the manufacturer, but the analyst can adjust the calibration curves (slope and y-intercept) on the bases of results of analyses of check samples, such as SRMs which are analyzed in the field.

EMPIRICAL CALIBRATION:

The empirical calibration method requires that a number of site-specific calibration standards (SSCS) are used to establish calibration parameters. The instrument response to known analytes is measured and used to create calibration curves. Empirical calibration is effective because the samples used closely match the sample matrix. SSCSs are well-prepared samples collected from the site of interest in which the concentrations of analytes have been determined by inductively coupled plasma (ICP), atomic absorption (AA), or other methods. The standards should contain all the analytes of interest and interfering analytes. Manufacturers recommend that 10 to 20 calibration samples be used to generate a calibration curve. The empirical method is the least desirable calibration method as it requires that new standards and curves are generated for each site that is analyzed.
Section 5: Effects of Moisture on XRF Results

Sample moisture has two effects on XRF results:

- It alters the soil chemistry, since water is another chemical compound that comprises the soil matrix.
- Moisture impedes the ability to properly prepare samples.

There is a further testing consideration:

- Laboratory results are provided on a dry weight basis.

Effect on Soil Chemistry:

While the presence of significant moisture does impact the soil chemistry, modern XRF analyzers all perform automatic corrections for variations in soil chemistry from site to site. Indeed, such variations are expected, and that is the reason analyzers use Compton Normalization or fundamental parameters, in order to correct for moisture content changes as well as other differences in soil geochemistry.

It is known that moisture content above 20 percent may cause problems, since moisture alters the soil matrix for which the FPXRF has been calibrated. However, the Compton Normalization or fundamental parameters methods are implemented in order to automatically correct results for changes to the soil matrix. Thus, we believe that soil moisture is not a significant effect on accuracy due to effects of soil matrix, except for the dilution effect that can cause discrepancies with laboratory results which is described below.

Sample Preparation Issues:

The inability to adequately prepare a wet sample is, we believe, the single biggest contributor to errors when testing wet samples. It is very difficult to grind or sieve a wet sample. The highest quality XRF results are generally obtained from prepared samples.

CAUTION

If the operator is unwilling to dry the sample to prepare it, comparisons to the laboratory may yield poorer correlation since the samples are not homogeneous.

Laboratory Tests on Dry-Weigh Basis:

Laboratories always dry samples prior to analysis. They report percent weight content based upon a dry sample basis. Portable XRF may often be used to analyze wet samples in the field, and results are thus reported that include the moisture content. Thus, with all other factors the same, the laboratory will report results higher than portable XRF. The results are higher by the amount of moisture content in the sample. For example, laboratory results will be 10% higher compared to XRF results, if the sample contained 10% by weight water when it was tested with XRF. Recall, this applies to samples where other possible sources of error are the same or negligible.
Section 6: Comparing XRF Results to Laboratory Results

Innov-X strongly recommends that operators compare prepared sample results to laboratory results. This is because prepared-sample results yield the best possible accuracy with portable XRF. Moreover, the most common source of error is due to non-uniform samples. No analytical technique, including the XRF technique, can properly account for non-uniform sample types.

To perform a comparison between XRF results and laboratory:

1. Collect a sample and prepare it according to the sample preparation guide given in “Section 8: Sample Prep Procedures and Testing Protocols” on page 90.
2. Take a sub-sample (5-10 grams) of the fully-prepared sample, place it into an XRF cup and perform at least a one-minute test on that sample.
3. Send the same sample to the laboratory for wet chemistry analysis.
4. Require the laboratory to use a total-digestion method. If the laboratory does not, they may not extract all of the elemental metal from the sample. In this case, the lab result will be lower than the XRF result. Incomplete sample digestion is one of the most common sources of laboratory error, thus it is very important to request a total digestion method.

Example of Error: The operator collects a bag of sample, performs XRF analysis on one part of the bag, and sends the bag, or part of the bag of sample to a laboratory for analysis. The laboratory reports a very different value than the operator obtained with the XRF.

Problem:
Since the sample is very non-homogeneous, the operator did not obtain a result that was representative of the entire bag of sample. The lab analyzed a different part of the sample and obtained a very different result due to the non-uniformity of the sample. The solution to this problem is, at a minimum, to test several locations in the bag of sample and report the average value. Also note the differences between the tests, as this is indicative of the non-uniformity of the sample. The operator should send entire bag of sample to the lab, and instruct the lab to prepare the sample before removing the sub-sample for lab analysis.

Best Practice:
The operator should homogenize and prepare the entire bag of sample, and then collect a sub-sample for XRF testing. After testing, the same sample should be sent to the lab.
Section 7: Common Interferences

Interference occurs when the spectral peak from one element overlaps either partially or completely with the spectral peak of another.

Case 1 Conditions
If the instrument is calibrated for both elements, one causing the interference and one being interfered with, it is generally capable of correctly handling the interference. In this instance, the element being interfered with may be measured with a poorer detection limit or poorer precision, but the analytical results should still be acceptable for field-portable XRF.

Case 2 Conditions
If the XRF is not calibrated for the element causing the interference, then the instrument may report the presence of elements not in the sample, or greatly elevated concentrations of elements in or not in the sample.

Example CASE 1: Lead and arsenic
Lead and arsenic. Most XRFs are calibrated for lead and arsenic. Lead interferes with arsenic (not vice-versa though). The net effect is a worsened detection limit for arsenic, and poorer precision. The XRF handles the correction automatically, but the precision is affected. The loss of precision is also reported by the XRF. (Refer to Innov-X Applications Sheet: In-field Analysis of Lead and Arsenic in Soil Using Portable XRF which is now available as Arsenic and Lead in Soil.PDF for more detail).

Example CASE 2: Bromine
Bromine in the sample, but the XRF is not calibrated for bromine. Bromine, as a fire retardant, is being seen more and more in soil and other sample types. For this reason, Innov-X analyzers include Br in the calibration data. If Br is not calibrated, but is present in the sample, the analyzer will report highly elevated levels of Pb, Hg and As. The levels will depend upon the concentration of Br in the sample.

Interferences between elements can be broadly categorized into two types:

Z, Z-1, Z+1 interferences
Occurs when high levels of an element of atomic number Z are present. This can cause elevated levels of elements with atomic number Z-1 or Z+1. Generally, portable XRFs have good correction methods, so this interference only causes problems with very high levels of the element in question. Example: High concentrations of Fe (Z=26) in excess of 10% may cause elevated levels of Mn or Co (Z=25 or Z=27 respectively).

K/L interferences
Occurs when the L-shell line of one element overlaps with the K-shell spectral line of another element. The most common example is the lead/arsenic interference where the L-alpha line of lead is in nearly the exact same location as the K-alpha line of arsenic.
Section 8: Sample Prep Procedures and Testing Protocols

Sample Preparation

Collect 5-10g Sample

Dry (if necessary)

Sieve using 2mm Mesh

Place 5-10g Sample into XRF Test cup

Grind remaining sample material using a Mortar/ Pestle or Grinder

Sieve thru 250μm mesh

Optional: Sieve thru 125μm mesh

Place in 5-10g Sample in XRF Test cups

Test with Innov-X Analyzer

Record Test 1 Results for comparison

Testing Protocols

Test with Innov-X Analyzer (Test 2 and Optional Test 2)

Record Test 2 and Optional Test 3 Results for comparison

Compare Test 1 with Test 2 Results and Optional Test 3 Results

If results change by <20% from Test 1 to Test 2 then only sieve thru 2mm mesh

If results change by ≥20% from Test 1 to Test 2, sieve thru at least 25μm mesh

Take Sub Sample for Lab Analysis

Send to independent Lab for results, use Total Digestion Method

Confirm results are consistent with Test 2 and Optional Test 2
Section 9: NIST Certificates of Analysis

Innov-X systems provides three NIST standards (subject to change with availability). Each standard’s certified values are given in Table 1 and non-certified values are in Table 2 in the graphics below.

Table 1. Certified Values

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Fraction (%)</th>
<th>Element</th>
<th>Mass Fraction (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>7.50 ± 0.06</td>
<td>Antimony</td>
<td>7.9 ± 0.6</td>
</tr>
<tr>
<td>Calcium</td>
<td>1.89 ± 0.05</td>
<td>Arsenic</td>
<td>17.7 ± 0.8</td>
</tr>
<tr>
<td>Iron</td>
<td>5.50 ± 0.11</td>
<td>Barium</td>
<td>968 ± 40</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.51 ± 0.05</td>
<td>Cadmium</td>
<td>0.38 ± 0.01</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.062 ± 0.005</td>
<td>Chromium</td>
<td>150 ± 4</td>
</tr>
<tr>
<td>Potassium</td>
<td>2.03 ± 0.06</td>
<td>Cobalt</td>
<td>13.4 ± 0.7</td>
</tr>
<tr>
<td>Silicon</td>
<td>29.66 ± 0.23</td>
<td>Copper</td>
<td>34.6 ± 0.7</td>
</tr>
<tr>
<td>Sodium</td>
<td>1.16 ± 0.03</td>
<td>Lead</td>
<td>18.9 ± 0.5</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.089 ± 0.002</td>
<td>Manganese</td>
<td>538 ± 17</td>
</tr>
<tr>
<td>Titanium</td>
<td>0.342 ± 0.024</td>
<td>Mercury</td>
<td>1.40 ± 0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nickel</td>
<td>88 ± 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium</td>
<td>1.57 ± 0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silver</td>
<td>0.41 ± 0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strontium</td>
<td>231 ± 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thallium</td>
<td>0.74 ± 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vanadium</td>
<td>112 ± 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zinc</td>
<td>106 ± 3</td>
</tr>
</tbody>
</table>

Table 2. Noncertified Values

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Fraction (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerium</td>
<td>42</td>
</tr>
<tr>
<td>Cesium</td>
<td>5.3</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>3.5</td>
</tr>
<tr>
<td>Europium</td>
<td>0.9</td>
</tr>
<tr>
<td>Gallium</td>
<td>14</td>
</tr>
<tr>
<td>Gold</td>
<td>0.3</td>
</tr>
<tr>
<td>Hafnium</td>
<td>3.7</td>
</tr>
<tr>
<td>Holmium</td>
<td>0.54</td>
</tr>
<tr>
<td>Indium</td>
<td>5</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>25</td>
</tr>
<tr>
<td>Lutetium</td>
<td>2.2</td>
</tr>
<tr>
<td>Neodymium</td>
<td>19</td>
</tr>
<tr>
<td>Plutonium</td>
<td>96.6</td>
</tr>
<tr>
<td>Samarium</td>
<td>3.8</td>
</tr>
<tr>
<td>Scandium</td>
<td>12</td>
</tr>
<tr>
<td>Thorium</td>
<td>11</td>
</tr>
<tr>
<td>Tungsten</td>
<td>2</td>
</tr>
<tr>
<td>Uranium</td>
<td>3</td>
</tr>
<tr>
<td>Yttrium</td>
<td>1.6</td>
</tr>
<tr>
<td>Zirconium</td>
<td>160</td>
</tr>
</tbody>
</table>
SRM2709

SRM2710

SRM2711

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material® 2710

Montana Soil

Highly Elevated Trace Element Concentrations

This Standard Reference Material (SRM) is intended primarily for use in the analysis of soils, sediments, or other materials of a similar matrix. SRM 2710 is a highly contaminated soil that was oven-dried, sieved, radiation sterilized, and blended to achieve a high degree of homogeneity. A unit of SRM 2710 consists of 50 g of the dried material.

The certified elements for SRM 2710 are given in Table 1. The values are based on measurements using one definitive method or two or more independent and reliable analytical methods. Noncertified values for a number of elements are given in Table 2 as additional information on the composition. The noncertified values should NOT be used for calibration or quality control. Analytical methods used for the characterization of this SEM are given in Table 3 along with analysts and cooperating laboratories. All values (except for carbon) are based on measurements using a sample weight of at least 250 mg. Carbon measurements are based on 100 mg samples.

Table 1. Certified Values

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Fraction (%)</th>
<th>Element</th>
<th>Mass Fraction (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>6.44 ± 0.08</td>
<td>Antimony</td>
<td>38.4 ± 3</td>
</tr>
<tr>
<td>Calcium</td>
<td>1.25 ± 0.03</td>
<td>Arsenic</td>
<td>626 ± 38</td>
</tr>
<tr>
<td>Iron</td>
<td>3.38 ± 0.10</td>
<td>Barium</td>
<td>707 ± 51</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.853 ± 0.042</td>
<td>Cadmium</td>
<td>21.8 ± 0.2</td>
</tr>
<tr>
<td>Manganese</td>
<td>1.01 ± 0.04</td>
<td>Copper</td>
<td>2950 ± 130</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.106 ± 0.015</td>
<td>Lead</td>
<td>5532 ± 80</td>
</tr>
<tr>
<td>Potassium</td>
<td>2.11 ± 0.11</td>
<td>Mercury</td>
<td>32.6 ± 1.8</td>
</tr>
<tr>
<td>Silicon</td>
<td>28.97 ± 0.18</td>
<td>Nickel</td>
<td>14.3 ± 1.0</td>
</tr>
<tr>
<td>Sodium</td>
<td>1.14 ± 0.06</td>
<td>Silver</td>
<td>35.3 ± 1.5</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.240 ± 0.006</td>
<td>Vanadium</td>
<td>76.6 ± 2.3</td>
</tr>
<tr>
<td>Titanium</td>
<td>0.283 ± 0.010</td>
<td>Zinc</td>
<td>6952 ± 91</td>
</tr>
</tbody>
</table>

Table 2. Noncertified Values

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Fraction (%)</th>
<th>Element</th>
<th>Mass Fraction (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>3</td>
<td>Bromine</td>
<td>6</td>
</tr>
<tr>
<td>Cerium</td>
<td>57</td>
<td>Cesium</td>
<td>197</td>
</tr>
<tr>
<td>Chromium</td>
<td>39</td>
<td>Cobalt</td>
<td>10</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>5.4</td>
<td>Europium</td>
<td>1</td>
</tr>
<tr>
<td>Gold</td>
<td>0.6</td>
<td>Holmium</td>
<td>0.6</td>
</tr>
<tr>
<td>Indium</td>
<td>5.1</td>
<td>Lanthanum</td>
<td>34</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>10</td>
<td>Neodymium</td>
<td>23</td>
</tr>
<tr>
<td>Radium</td>
<td>120</td>
<td>Scandium</td>
<td>8.7</td>
</tr>
<tr>
<td>Strontium</td>
<td>330</td>
<td>Samarium</td>
<td>7.8</td>
</tr>
<tr>
<td>Thallium</td>
<td>1.3</td>
<td>Scandium</td>
<td>8.7</td>
</tr>
<tr>
<td>Thorium</td>
<td>13</td>
<td>Strontium</td>
<td>330</td>
</tr>
<tr>
<td>Uranium</td>
<td>25</td>
<td>Ytterbium</td>
<td>1.3</td>
</tr>
<tr>
<td>Yttrium</td>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Certified Values

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Fraction (%)</th>
<th>Element</th>
<th>Mass Fraction (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>6.53 ± 0.09</td>
<td>Antimony</td>
<td>19.4 ± 1.8</td>
</tr>
<tr>
<td>Calcium</td>
<td>2.88 ± 0.08</td>
<td>Arsenic</td>
<td>105 ± 8</td>
</tr>
<tr>
<td>Iron</td>
<td>2.80 ± 0.06</td>
<td>Barium</td>
<td>726 ± 38</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.05 ± 0.03</td>
<td>Cadmium</td>
<td>41.70 ± 0.25</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.086 ± 0.007</td>
<td>Copper</td>
<td>114 ± 2</td>
</tr>
<tr>
<td>Potassium</td>
<td>2.45 ± 0.08</td>
<td>Lead</td>
<td>1162 ± 31</td>
</tr>
<tr>
<td>Silicon</td>
<td>30.44 ± 0.19</td>
<td>Manganese</td>
<td>638 ± 28</td>
</tr>
<tr>
<td>Sodium</td>
<td>1.14 ± 0.03</td>
<td>Mercury</td>
<td>6.25 ± 0.19</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.042 ± 0.001</td>
<td>Nickel</td>
<td>20.6 ± 1.1</td>
</tr>
<tr>
<td>Titanium</td>
<td>0.300 ± 0.023</td>
<td>Selenium</td>
<td>1.52 ± 0.14</td>
</tr>
</tbody>
</table>

Table 2. Noncertified Values

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Fraction (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromine</td>
<td>5</td>
</tr>
<tr>
<td>Cerium</td>
<td>69</td>
</tr>
<tr>
<td>Cesium</td>
<td>61</td>
</tr>
<tr>
<td>Chromium</td>
<td>47</td>
</tr>
<tr>
<td>Cobalt</td>
<td>19</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>5.6</td>
</tr>
<tr>
<td>Europium</td>
<td>1.1</td>
</tr>
<tr>
<td>Gallium</td>
<td>15</td>
</tr>
<tr>
<td>Gold</td>
<td>0.03</td>
</tr>
<tr>
<td>Hafnium</td>
<td>7.3</td>
</tr>
<tr>
<td>Holmium</td>
<td>1</td>
</tr>
<tr>
<td>Indium</td>
<td>1.1</td>
</tr>
<tr>
<td>Iodine</td>
<td>8</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>46</td>
</tr>
<tr>
<td>Lutetium</td>
<td>1.6</td>
</tr>
<tr>
<td>Neodymium</td>
<td>31</td>
</tr>
<tr>
<td>Radium</td>
<td>110</td>
</tr>
<tr>
<td>Samarium</td>
<td>5.9</td>
</tr>
<tr>
<td>Scandium</td>
<td>9</td>
</tr>
<tr>
<td>Thorium</td>
<td>14</td>
</tr>
<tr>
<td>Tungsten</td>
<td>3</td>
</tr>
<tr>
<td>Uranium</td>
<td>2.6</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>2.7</td>
</tr>
<tr>
<td>Yttrium</td>
<td>25</td>
</tr>
<tr>
<td>Zincium</td>
<td>239</td>
</tr>
</tbody>
</table>

This Standard Reference Material (SRM) is intended primarily for use in the analysis of soils, sediments, or other materials of a similar matrix. SRM 2711 is a moderately contaminated soil that was oven-dried, sieved, radiation sterilized, and blended to achieve a high degree of homogeneity. A unit of SRM 2711 consists of 50 g of the dried material.
A3. Specifications

<table>
<thead>
<tr>
<th>Handheld Analyzer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>3.35 lbs. (Base wt.), 3.70 lbs. (1.6 kg) with battery</td>
</tr>
<tr>
<td>Excitation Source</td>
<td>4 Watt X-ray tube - Au, Ag, Rh, or Ta anode (application optimized), 8-40 keV, 5 - 200 μA, eight filter positions</td>
</tr>
<tr>
<td>Detector</td>
<td>Various: Si PIN diode or Si Drift detector, thermo-electrically cooled, high resolution</td>
</tr>
<tr>
<td>Power</td>
<td>Removable Li-ion batteries, or AC power unit</td>
</tr>
<tr>
<td>Battery Life</td>
<td>Battery life varies depending on usage patterns</td>
</tr>
<tr>
<td>Display</td>
<td>Color “transflective” touchscreen (800 x 600) with 16-bit LCD interface</td>
</tr>
<tr>
<td>Cal Check Coupon</td>
<td>316 Stainless Steel Alloy -- see also Docking Station</td>
</tr>
<tr>
<td>Power Requirements for AC Adapter</td>
<td>110-220 VAC, 50-60 Hz, 600 W max (P/N 100043)</td>
</tr>
<tr>
<td>Pressure Correction</td>
<td>Built-in barometer for automatic altitude correction</td>
</tr>
</tbody>
</table>
| Operating Environment | Temperature: -10° C to 45° C
| | Humidity: 10 to 90% Relative Humidity, non-condensing
| | Altitude Rating: 2000 meters |
| Operating System | Windows Embedded CE® |
| Application Software | Innov-X Systems’ proprietary Data Acquisition and Processing package. |
| USB Interface | USB 2.0 |

Docking Station

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
</tr>
<tr>
<td>Power Requirement</td>
</tr>
<tr>
<td>Cal Check Cup</td>
</tr>
<tr>
<td>Battery Charging</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Battery Charger</td>
</tr>
<tr>
<td>TestStand/Workstation</td>
</tr>
<tr>
<td>Soil Foot</td>
</tr>
<tr>
<td>Soil Extension Pole</td>
</tr>
</tbody>
</table>
| Trimble Xploration Package (P6000FDC) | XPLORER FIELD DATA COLLECTION BUNDLE
Trimble Nomad 800G-LC - Ruggedized 800Mhz Field Computer with integrated GPS, Wi-Fi, Bluetooth, Camera, 16Gb Memory, SD Card Slot
Options: Barcode Scanner, Cell Phone Interface, Fully DGPS compatible running Windows Mobile 6.0 OS. |
<table>
<thead>
<tr>
<th>Trimble Xploration Package (P6000TFG)</th>
<th>XPLORER TOTAL FIELD GEOCHEM BUNDLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Includes all features supplied with Field Data Collection Package and:</td>
<td></td>
</tr>
<tr>
<td>Soil Extension Pole - Ergonomic extension pole facilitating soil analysis by a standing (and walking) operator.</td>
<td></td>
</tr>
<tr>
<td>Soil Foot - Attaches to nose of DELTA analyzer balancing analyzer on ground for hands-free, extended in-situ testing.</td>
<td></td>
</tr>
<tr>
<td>ioGAS - ioAnalytics GeoChemical Analysis Software Suite, an advanced spatial data analysis package for visualization, interrogation & validation of geochemical data for mineral exploration, mining, & environmental industries.</td>
<td></td>
</tr>
</tbody>
</table>
A4. Typical Delta Test Sequence

Innov-X Delta User Interface

Operators manage their measurement, analysis, and results activities from the Innov-X UI when in ANY of the Alloy modes/calibrations. This Appendix presents:

- Typical Sample Test Procedure, and
- Prerequisites for testing necessary for various modes

Typical Sample Test Procedure

This sample procedure features the Alloy Plus mode.

Other modes follow a similar sequence, however, the Test Condition screens are generally unique to each testing situation.

Use these steps:

1. From the Home screen, tap Mode icon
2. From Mode screen, tap the Alloy Plus icon
3. Select Mode Setup button
4. Select Test Conditions, then Test Time
5. Ensure that the Testing Time and other parameters are properly selected
6. Press OK button, the Back, then OK again
7. Return to Home screen, select Test to call the Test-Alloy Plus screen

Testing Tips for Certain Modes

Alloy:
- Place the analyzer’s window on/over the test specimen, cover the window completely.
- Remember the Safety information (C2, Pages 29-31) to ensure your own personal safety.
- Take care not to damage the window film, such as when testing “metal turnings” or hot surfaces.

Soil or Mining:
- Place the analyzer’s measurement window directly over the sample cup with the film side up.
- Specify the altitude or atmospheric pressure to gain increased accuracy for light elements.
- Confirm that the Testing Time and other parameters are properly selected
- Take care not to damage the window film, such as when testing uneven surfaces

RoHS:
- In order for XRF testing to be quantitative, samples must be:
 - Homogeneous
 - Have a certain minimum sample thickness
 - Five (5) mm for polymers and light alloys
 - Fifteen (15) mm for liquid samples
 - One (1) mm for other alloys
 - If samples are heterogeneous, too thin, or too small, only qualitative screening is possible.

8. Start a new test by using one of these methods:
 a. Tap Start button on the UI (toggles Delta to X-ray ON state)
 - or —
 b. Pull the trigger (toggles instrument to X-ray ON state)
 - or —
 c. Pull-and-hold the trigger when the “Deadman Trigger” is active.
Best Practices for Testing

Alloy Mode

Prior to a test session, analysts should have an understanding of Innov-X’s implementation of:

- **Grade Libraries** -> populated by alloy Grades -> their chemistry characterized by Grade Tables. See [Grade Libraries](#) for library management procedures.
- **Match Issues** including the concept and use of Match Numbers. See [Match Issues](#)

Prior to initiating testing with the analyzer software, ensure that the following tasks are complete:

1. Analyzer does not require a Cal Check procedure.
2. The analyzer’s measurement window is properly positioned in front of or over the test sample.
3. The Match Cutoff and nSigma parameters are configured.

Mining and Soil Modes

Check Standards

- Measure a check standard after each Cal Check, and periodically throughout the day. Test for a recommended minimum of one minute.
- Concentrations for elements of interest, in the range expected, plus or minus the error on the reading, should be within 20 percent of the standard value.
- **A2.Soil Testing** describes recommended quality assurance details.
• The standards provided with the analyzer are contained in XRF sample cups. These containers have a window (through which the soil can be viewed) on one side, and a solid cap on the other side.

Always measure samples through the window.

Sample Presentation

IN SITU TESTING
In situ testing is performed by pointing the analyzer at the ground. Clear any grass or large rocks away and hold the analyzer with the probe head front flush to the ground. Since dirt can accumulate on the analyzer window, gently wipe the window clean after each analysis. Ensure the window is not ripped or punctured.

BAGGED OR PREPARED SAMPLE TESTING
Analyze prepared samples in a sample cup, through its window. Place the instrument's measurement window directly over the sample cup with the film side up.

Preparation considerations include:
• Avoid measuring very thin samples, as this can affect results. Prepare samples cups to contain at least 15 (usually 4-8 grams) mm of packed samples.
• When analyzing bagged samples, ensure that sufficient sample material exists in the bag to create a a sample thickness of a minimum of 15 mm for a spot size that is larger than the analyzer’s measurement window.
• When using bags, cheaper bags (having thinner plastic walls) are better than more expensive ones (which have thicker plastic walls).

Consumer Mode

RoHS Best Practices

Check Standards
Innov-X Systems recommends that a check standard be measured after each Cal Check procedure, and periodically throughout the day.

Two certified standards are provided for verification.
• At least one standard should be measured for a minimum of two minutes.
• Concentrations for target elements (plus or minus the error on the reading) should be within 20% of the standard value.
• Standards provided are contained in XRF sample cups with a window (through which the plastic pellets can be viewed) on one side, and a solid cap on the other side.
• Samples should be measured in the sample cup, through the window.

Sample Presentation
Since many pieces of plastic analyzed for ROHS compliance are very small, take care to measure them in a safe and accurate manner.

See the IEC-ACEA recommendation for minimum thickness of test samples as shown in Chapter C.8.
A5. User Maintenance

5.1 Alternative Techniques for Powering or Charging the Delta

5.1.1. AC Power Adapter Kit

The kit is an optional accessory. It is supplied with a 10 foot AC power cord, a switching AC adapter, and a Battery Module. This kit eliminates the Li-ion battery requirement, however the user is constrained by the length of the AC power cord. The procedure for using the AC adapter is shown below.

WARNING

Ensure that each AC supply circuit has adequate power load capability and is provided from a grounded AC receptacle.

TO SETUP THE ADAPTER:

1. Plug the three-prong male plug into the receptacle.

2. Insert the three-prong female plug into the male receptacle on the Switching AC Adaptor brick.

3. Slide the Battery Eliminator unit into the analyzer with the contacts to the left. It is keyed to only go in oriented this way.

4. The user now has no limit to instrument power; not restricted by battery charge level. The range of action is constrained by the length of the power cord.
5.1.2. Li ion Battery Charger Assembly

This section describes the procedure for charging the Li-ion batteries when the Delta Docking Station is NOT available. It features a single socket standalone battery charger (P/N 120253) The unit takes about two hours to completely charge a battery. Status of the battery’s charge is shown by two lights on the power adaptor.

TO CHARGE THE BATTERY:

1. Plug the three-prong male plug into the Modes receptacle.

2. Plug the three-prong female plug into the male receptacle on the AC Adaptor brick.

3. Plug the connector labeled CH4500 24 VDC into the connector labeled SWC on the back of the charger.

4. Insert the Li-ion battery into the charger with the contacts facing right.
CAUTION

Forcing the battery in with the contacts oriented improperly will injure the contacts and destroy the battery.

Battery Charger Status Lights

<table>
<thead>
<tr>
<th>Left Light (Green only)</th>
<th>Right Light (Red only)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>On - Flashing</td>
<td>Off</td>
<td>Battery is charging</td>
</tr>
<tr>
<td>On - Solid</td>
<td>Off</td>
<td>Battery is charged</td>
</tr>
<tr>
<td>Off</td>
<td>On - Solid</td>
<td>Error. Remove battery and replace on charger. If the error persists, call Innov-X Systems Technical support.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>No battery is on charger</td>
</tr>
</tbody>
</table>
5.2 — Window Replacement for “Hinged Plate” Analyzers

How to Replace the Window on a Delta Analyzer (All Models)

Tools:
- **Required** - Small Phillips Head Screwdriver
- **Recommended** - Tweezers or Needle nose pliers; Can of compressed air
- **As needed** - Lint-free wipes or swabs

Key Parts
- X-Ray Screws, (2), 2-56x3/16"
- Hinged Face Plate
- Film Window
- Gasket (Black)
- Window Spacer (White)

Remove Old Window

Use these guidelines:
- During this entire removal process, keep dust or foreign material out of the instrument.
- Ensure that the instrument is powered off.
- Take care to have clean hands.
- Orient the instrument with the nose pointing up.
- Review the **TIPS** section on next page before opening the hinged plate.
- Use Phillips head screwdriver to remove the two screws.
 - Carefully set aside the screws.
- Swing the hinged face plate out to expose the film window.
- Remove the old window.
- Observe the white plastic window spacer and the black rubber gasket
- Remove any dirt or foreign material from the gasket with compressed air
- Take EXTREME CARE to not harm any internal components

CAUTION
Avoid expensive internal damage, DO NOT INSERT anything (fingers or tools) into the instrument.
Replacement Window Details

- Windows assemblies are made from either Prolene, Mylar, or Kapton film.
 - Users must specify the proper material to match their original application and calibration.
- The selected film is adhered to one side of a polyester backing plate; this creates a “front” and “back” surface
 - “Back” surface is completely covered with film.
 - “Front” surface shows a circular ridge where the film only is present, showing through the center hole of backing plate. This front surface also has a part type designator.
- Ensure that the “back” surface faces up when installing a new window (See below).

<table>
<thead>
<tr>
<th>PRO 6 Prolene</th>
<th>MYL 25 Mylar</th>
<th>KAP 8 Kapton</th>
</tr>
</thead>
<tbody>
<tr>
<td>P/N: 102999</td>
<td>103000</td>
<td>103173 (Hi-Temp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>103115 (Classic Standard)</td>
</tr>
</tbody>
</table>

Install Replacement

Follow these steps:
- Remove new window assembly from shipping envelope.
- Handle it by edges or use tweezers.
- Apply canned compressed air to clear any contaminants from the surfaces.
- Place window assembly on the hinged plate with **film back surface facing up**.
 - Center it to avoid the screw holes.
- Carefully rotate the hinged plate up to secure the window assembly.
- Insert the two screws; tighten only to “snug”.
 - Don’t over-tighten them or strip the threads.

TIPS

- Do not touch the film in the center opening (on either side).
- When using the screwdriver, keep a finger or thumb between the tool and the X-ray window. This prevents accidentally sticking the tool through the film and causing internal damage.
- The cost for replacement windows is quite low. Users are encouraged to change them frequently in order to obtain optimum test results.
- When not operating an instrument, experienced users routinely keep it the Delta Docking Station cradle.
 - This keeps the window clean, and
 - Prevents accidental damage to the window film, and
 - Takes advantage of the battery charging and Cal Checking procedure that the DDS offers.
A6. Packing and Shipping

If the instrument is not returned in the protective case, it can be damaged during shipping. Innov-X Systems reserves the right to void the warranty on instruments that are damaged during return shipping that are sent without the protective case.

Prior to returning a unit, contact Customer Service at the appropriate depot:

United States
- Phone: 1-781-938-5005
- Fax: 1-781-938-0128
- Email: Service@Innov-Xsys.com

Europe
- Phone: +31 (0)73 62 72 590
- Fax: +31 (0)73 62 72 599
- Email: info@innovx-europe.com

Canada
- Phone: 1-778-960-6279
- Fax: 1-604-568-2474
- Toll Free Fax: 1-888-873-6598
- Email: service@innovx.ca

Australia
- Phone: 02 9577 9500
- Fax: 02 9519 1850
- Email: service@innovx.com

Or call your local distributor.

Ensure that you receive the required RMA number.

Follow these instructions to return your XRF Analyzer:

1. Pack the analyzer in the black protective case in which it arrived, using the original packing materials.
2. Include the RMA in the case and reference the RMA number in your shipping documents.
3. Close the protective case and either:
 - Secure it with plastic zip ties,
 - or
 - Pack the protective case within another box.
Regulations for Shipping Products with Lithium Ion Batteries

The United States and many other countries have instituted regulations that require shippers to use a special Caution label referring to a Lithium Ion Battery.

- Label must be prominently displayed on the outer shipping container of any product that contains a Lithium Ion battery.

- Shipper may copy the label shown below to facilitate making the warning label. Use a color copier if possible.
A7. Legal Information

This section provides copies of the following:

- Delta Analyzer Limited Warranty including:
 - Limitation of Liability
 - Warranty Period, Returns, and Repairs
 - Instructions for Contacting Innov-X
- End User Software License Agreement including:
 - Use, Restrictions, and Termination of Software
 - Governmental End User Conditions
 - Limited Warranty and Limitation of Liability

Innov-X Delta Analyzer Limited Warranty

General Terms

EXCEPT AS EXPRESSLY SET FORTH IN THIS LIMITED WARRANTY, INNOV-X SYSTEMS, INC. (INNOV-X) MAKES NO OTHER WARRANTIES OR CONDITIONS, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. INNOV-X EXPRESSLY DISCLAIMS ALL WARRANTIES AND CONDITIONS NOT STATED IN THIS LIMITED WARRANTY. ANY IMPLIED WARRANTIES THAT MAY BE IMPOSED BY LAW ARE LIMITED IN DURATION TO THE LIMITED WARRANTY PERIOD.

This Limited Warranty applies to Innov-X analyzers sold or leased from Innov-X, its affiliates, authorized resellers, or country distributors (collectively referred to in this Limited Warranty as “Innov-X.”)

Innov-X warrants that the analyzer and all its internal and external components that you have purchased are free from defects in materials or workmanship under normal use during the Limited Warranty Period. The Limited Warranty Period starts on the date of shipment by Innov-X. You may be required to provide proof of purchase or lease as a condition of receiving warranty service. You are entitled to warranty service according to the terms and conditions of this document if a repair to your Innov-X analyzer is required within the Limited Warranty Period.

During the Limited Warranty Period, Innov-X will repair or replace the defective component parts. All component parts removed under this Limited Warranty become the property of Innov-X. In the unlikely event that your Innov-X analyzer has a recurring failure, Innov-X, at its discretion, may elect to provide you with a replacement unit of Innov-X’s choosing that is at least equivalent to your Innov-X analyzer. This is your exclusive remedy for defective products. The repaired or replacement analyzer is warranted for the remainder of the limited Warranty Period.

YOU SHOULD MAKE PERIODIC BACKUP COPIES OF THE DATA STORED ON THE ANALYZER’S SYSTEM COMPUTER AS A PRECAUTION AGAINST POSSIBLE FAILURES, ALTERATION, OR LOSS OF THE DATA. BEFORE RETURNING ANY UNIT FOR SERVICE, BE SURE TO BACK UP DATA AND REMOVE ANY CONFIDENTIAL, PROPRIETARY, OR PERSONAL INFORMATION. INNOV-X IS NOT RESPONSIBLE FOR DAMAGE TO OR LOSS OF ANY PROGRAMS, OR DATA. INNOV-X IS NOT RESPONSIBLE FOR THE RESTORATION OR REINSTALLATION OF ANY PROGRAMS OR DATA OTHER THAN SOFTWARE INSTALLED BY INNOV-X WHEN THE ANALYZER IS MANUFACTURED.

Innov-X does not warrant that the operation of this analyzer will be uninterrupted or error-free. Innov-X is not responsible for damage that occurs as a result of your failure to follow the instructions that came with the Innov-X analyzer.

This Limited Warranty does not apply to expendable parts. This Limited Warranty does not extend to any analyzer from which the serial number has been removed or that has
been damaged or rendered defective (a) as a result of accident, misuse, abuse, or other external causes; (b) by operation outside the usage parameters stated in user documentation that shipped with the product; (c) by modification or service by anyone other than (i) Innov-X, or (ii) an Innov-X authorized service provider; (d) installation of software not approved by Innov-X.

These terms and conditions constitute the complete and exclusive warranty agreement between you and Innov-X regarding the Innov-X analyzer you have purchased or leased. These terms and conditions supersede any prior agreements or representations --- including representations made in Innov-X sales literature or advice given to you by Innov-X or any agent or employee of Innov-X --- that may have been made in connection with your purchase or lease of the Innov-X analyzer. No change to the conditions of this Limited Warranty is valid unless it is made in writing and signed by an authorized representative of Innov-X.

Limitation of Liability

IF YOUR INNOV-X ANALYZER FAILS TO WORK AS WARRANTED ABOVE, YOUR SOLE AND EXCLUSIVE REMEDY SHALL BE REPAIR OR REPLACEMENT. INNOV-X’S MAXIMUM LIABILITY UNDER THIS LIMITED WARRANTY IS EXPRESSLY LIMITED TO THE LESSER OF THE PRICE YOU HAVE PAID FOR THE ANALYZER OR THE COST OF REPAIR OR REPLACEMENT OF ANY COMPONENTS THAT MALFUNCTION IN CONDITION OF NORMAL USE.

INNOV-X IS NOT LIABLE FOR ANY DAMAGE CAUSED BY THE PRODUCT OR THE FAILURE OF THE PRODUCT TO PERFORM INCLUDING ANY LOST PROFITS OR SAVINGS OR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. INNOV-X IS NOT LIABLE FOR ANY CLAIM MADE BY A THIRD PARTY OR MADE BY YOU FOR A THIRD PARTY.

THIS LIMITATION OF LIABILITY APPLIES WHETHER DAMAGES ARE Sought, OR A CLAIM MADE, UNDER THIS LIMITED WARRANTY OR AS A TORT CLAIM (INCLUDING NEGLIGENCE AND STRICT PRODUCT LIABILITY), A CONTRACT CLAIM, OR ANY OTHER CLAIM. THIS LIMITATION OF LIABILITY CANNOT BE WAIVED OR AMENDED BY ANY PERSON. THIS LIMITATION OF LIABILITY WILL BE EFFECTIVE EVEN IF YOU HAVE ADVISED INNOV-X OR AN AUTHORIZED REPRESENTATIVE OF INNOV-X OF THE POSSIBILITY OF ANY SUCH DAMAGES.
Software

This Limited Warranty does not warrant software products. The Innov-X software installed on the analyzer’s system computer is covered by the Innov-X End User Software License Agreement.

Warranty Period

The warranty period for an Innov-X Delta Analyzer is two years. This warranty does not extend to expendable parts. Extended warranties are available from Innov-X.

Warranty Returns

A Return Material Authorization (RMA) Number must be obtained from the INNOV-X Service Department before any items can be shipped to the factory. Returned goods will not be accepted without an RMA Number. Customer will bear all shipping charges for warranty repairs. All goods returned to the factory for warranty repair should be properly packed to avoid damage and clearly marked with the RMA Number.

Warranty Repairs

Warranty repairs will be done either at the customer's site or at the INNOV-X plant, at our option. All service rendered by INNOV-X will be performed in a professional manner by qualified personnel.

Contacting Innov-X

Be sure to have the following information available before you call Innov-X:

- Analyzer serial number, model name, and model number
- Applicable error messages
- Description of problem
- Detailed questions

Methods of Contact

— United States —
- Phone: 1-781-938-5005
- Fax: 1-781-938-0128
- Email: Service@Innov-Xsys.com
- Mail & Shipping Address: Innov-X Systems, Inc.
 100 Sylvan Road
 Woburn, MA 01801

— Canada —
- Phone: 1-778-960-6279
- Fax: 1-604-568-2474
- Toll Free FAX: 1-888-873-6598
- Email: service@innovx.ca
- Mail & Shipping Address: Innov-X Canada
 1201 West Georgia, Ste. 2
 Vancouver BC
 Canada V6E 3J5

— Europe —
- Phone: +31 (0)73-62 72 590
- Fax: +31 (0)73-62 72 599
- Email: info@innovx-europe.com
- Mail & Shipping Address: Innov-X Systems, Inc.
 Kasteleinenkampweg 9R
 5222 AX ’s-Hertogenbosch
 The Netherlands

— Australia —
- Phone: 02 9577 9500
- Fax: 02 9519 1850
- Email: service@innovx.com
- Mail & Shipping Address: Innov-X Systems Australia Pty Ltd
 215 Euston Road, # 6 / L3
 Alexandria, NSW, 2015
 Australia

Or call your local distributor.
End User Software License Agreement

THIS END USER SOFTWARE LICENSE AGREEMENT IS FOR THE SOFTWARE USED TO OPERATE THE INNOV-X SYSTEMS’ Delta™ XRF ANALYZER AND LIMITED PRODUCT WARRANTY

NOTICE TO USER:
PLEASE READ THIS DOCUMENT CAREFULLY. THIS IS THE CONTRACT BETWEEN YOU AND INNOV-X SYSTEMS, INC. (INNOV-X), REGARDING THE OPERATING SOFTWARE FOR YOUR INNOV-X Delta™ XRF ANALYZER INSTRUMENT.

THIS LICENSE COVERS THE INNOV-X SOFTWARE INSTALLED ON THE DELTA™ XRF ANALYZER’S SYSTEM COMPUTER AND THE INNOV-X SOFTWARE OR FIRMWARE INSTALLED ON THE COMPUTER CHIPS WITHIN YOUR ANALYZER ENCLOSURE. THIS AGREEMENT CONTAINS WARRANTY AND LIABILITY DISCLAIMERS AND LIMITATIONS. YOUR INSTALLATION AND USE OF THE INNOV-X SOFTWARE IS SUBJECT TO THE TERMS AND CONDITIONS CONTAINED IN THIS END USER SOFTWARE LICENSE AGREEMENT. THIS LICENSE DOES NOT COVER THE OPERATING SYSTEM SOFTWARE AND OTHER SOFTWARE THAT MAY BE INCLUDED.

This Innov-X Systems, Inc. End User Software License Agreement accompanies an Innov-X Systems, Inc. Analyzer (including the external System Computer) with the software product installed (“Software”) and related explanatory materials (“Documentation”). The term “Software” also includes any upgrades, modified versions, updates, additions and copies of the Software licensed to you by Innov-X Systems, Inc. The term “License” or “Agreement” means this End User Software License Agreement. The term “you” or “Licensee” means the purchaser of this license to use the Software.

Title

Title, ownership rights and intellectual property rights in and to the Software and Documentation shall at all times remain with Innov-X Systems, Inc., and their suppliers. All rights not specifically granted by this License, including Federal and international copyrights, are reserved by Innov-X Systems, Inc. or their respective owners.

Copyright

The Software, including its structure, organization, code, user interface and associated Documentation, is a proprietary product of Innov-X Systems, Inc. or its suppliers, and is protected by international laws of copyright. The law provides for civil and criminal penalties for anyone in violation of the laws of copyright.
License

Use of the Software

1. Subject to the terms and conditions of this Agreement, Innov-X Systems, Inc. grants the purchaser of this product a non-exclusive license only to use the Software installed on the system computer that is integrated with your Analyzer and to use the software installed on the circuit boards that are installed in your Innov-X analyzer.

2. You may make one copy of the Software in machine-readable form solely for backup or archival purposes. You must reproduce on any such copy all copyright notices and any other proprietary legends found on the original. You may not make any other copies of the Software.

Restrictions

1. You may not copy, transfer, rent, modify, use or merge the Software, or the associated documentation, in whole or in part, except as expressly permitted in this Agreement.

2. You may not reverse assemble, decompile, or otherwise reverse engineer the Software.

3. You may not remove any proprietary, copyright, trade secret or warning legend from the Software or any Documentation.

4. You agree to comply fully with all export laws and restrictions and regulations of the United States or applicable foreign agencies or authorities. You agree that you will not export or re-export, directly or indirectly, the Software into any country prohibited by the United States Export Administration Act and the regulations there under or other applicable United States law.

5. You may not modify, sell, rent, transfer (except temporarily in the event of a computer malfunction), resell for profit, or distribute this license or the Software, or create derivative works based on the Software, or any part thereof or any interest therein. Notwithstanding the foregoing, you may transfer this Software to a purchaser of the specific Innov-X Analyzer in or for which this Software is installed in connection with any sale of such Analyzer, provided that the transferee agrees to be bound by and to comply with the provisions of this Agreement. A re-licensing fee may be charged for any such replacement software.
Termination

You may terminate this Agreement by discontinuing use of the Software, removing all copies from the system computer's hard drive and returning the Software and Documentation, and all copies thereof, to Innov-X Systems, Inc. Innov-X Systems, Inc. may terminate this Agreement if you fail to comply with all of its terms, in which case you agree to discontinue using the Software, remove all copies from the system computer and storage media, and return all copies of the Documentation thereof, to Innov-X Systems, Inc.

WARNING: Although it is theoretically possible for you to write software to operate the Innov-X analyzer, you are required to return the software as a result of failing to comply with the terms of this license, it is likely that the Analyzer purchased with the software covered by this License will not work properly. In addition, any remaining term under the warranty on the Analyzer will be voided.

U.S. Government End Users

European Community End Users

If this Software is used within a country of the European Community, nothing in this Agreement shall be construed as restricting any rights available under the European Community Software Directive 2006/116/EC.O.J. Published in (L.372) V49 (27 Dec. 2006).

Medical or Therapeutic Use Prohibited

You acknowledge that the Software has not been cleared, approved, registered or otherwise qualified (collectively, “Approval”) by Innov-X Systems, Inc. with any regulatory agency for use in diagnostic or therapeutic procedures, or for any other use requiring compliance with any federal or state law regulating diagnostic or therapeutic products, blood products, medical devices or any similar product (hereafter collectively referred to as “federal or state drug laws”). The Software may not be used for any purpose that would require any such Approval unless proper Approval is obtained. You agree that if you elect to use the Software for a purpose that would subject you or the Software to the jurisdiction of any federal or state drug laws, you will be solely responsible for obtaining any required Approvals and otherwise ensuring that your use of the Software complies with such laws.
Limited warranty and Limitation of remedies

Limited Warranty

Innov-X Systems, Inc. warrants that for a period of ninety days from the beginning of the applicable warranty period (as described below), or for the designated warranty period if a different warranty period is designed as the warranty period for the Software in the current version of an instrument operating manual or catalog or in a specific written warranty including with and covering the Software, the Software will function substantially in accordance with the functions and features described in the Documentation delivered with the Software when properly installed.

The above warranties do not apply to defects resulting from misuse, neglect, or accident, including without limitation: operation outside of the Innov-X analyzer or use specifications, or not in conformance with the instructions for any instrument system, software, or accessories; improper or inadequate maintenance by the user; installation of software or interfacing, or use in combination with software or products not supplied or authorized by Innov-X Systems, Inc.; and modification or repair of the analyzer not authorized by Innov-X Systems, Inc.

Warranty Period Commencement Date.

The applicable warranty period for software begins on the earlier of the date of installation or three (3) months from the date of shipment for software installed by Innov-X Systems, Inc.' personnel. For software installed by the purchaser or anyone other than Innov-X Systems, Inc., the warranty period begins on the date the software is delivered to you. The applicable warranty period for media begins on the date the media is delivered to the purchaser.

INNOV-X SYSTEMS, INC. MAKES NO OTHER WARRANTIES OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, WITH RESPECT TO THE SOFTWARE OR DOCUMENTATION, INCLUDING BUT NOT LIMITED TO WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY OR THAT THE SOFTWARE OR DOCUMENTATION IS NON-INFRINGEMENT. ALL OTHER WARRANTIES ARE EXPRESSLY DISCLAIMED. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, INNOV-X SYSTEMS, INC. MAKES NO WARRANTIES THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, THAT OPERATION OF THE LICENSED SOFTWARE WILL BE UNINTERRUPTED OR ERROR FREE OR WILL CONFORM EXACTLY TO THE DOCUMENTATION, OR THAT INNOV-X SYSTEMS, INC. WILL CORRECT ALL PROGRAM ERRORS. INNOV-X SYSTEMS, INC.' SOLE LIABILITY AND RESPONSIBILITY FOR BREACH OF WARRANTY RELATING TO THE SOFTWARE OR DOCUMENTATION SHALL BE LIMITED, AT INNOV-X SYSTEMS, INC.' SOLE OPTION, TO (1) CORRECTION OF ANY ERROR IDENTIFIED TO INNOV-X SYSTEMS, INC. IN WRITING FROM YOU IN A SUBSEQUENT RELEASE OF THE SOFTWARE, WHICH SHALL BE SUPPLIED TO YOU FREE OF CHARGE, (2) REPLACEMENT OF THE DEFECTIVE SOFTWARE WITH A FUNCTIONALLY EQUIVALENT PROGRAM AT NO CHARGE TO YOU, OR (3) PROVIDING A REASONABLE WORKAROUND WITHIN A REASONABLE TIME. INNOV-X SYSTEMS, INC. SOLE LIABILITY AND RESPONSIBILITY UNDER THIS AGREEMENT FOR BREACH OF WARRANTY RELATING TO MEDIA IS THE REPLACEMENT OF DEFECTIVE MEDIA RETURNED WITHIN 90 DAYS OF THE DELIVERY DATE. THESE ARE YOUR SOLE AND EXCLUSIVE REMEDIES FOR ANY BREACH OF WARRANTY. WARRANTY CLAIMS MUST BE MADE WITHIN THE APPLICABLE WARRANTY PERIOD.
Limitation of liability

IN NO EVENT SHALL INNOV-X SYSTEMS, INC. OR ITS SUPPLIERS BE RESPONSIBLE OR LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY OR UNDER ANY STATUTE (INCLUDING WITHOUT LIMITATION ANY TRADE PRACTICE, UNFAIR COMPETITION OR OTHER STATUTE OF SIMILAR IMPORT) OR ON ANY OTHER BASIS FOR SPECIAL, INDIRECT, INCIDENTAL, MULTIPLE, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE POSSESSION OR USE OF, OR THE INABILITY TO USE, THE SOFTWARE OR DOCUMENTATION, EVEN IF INNOV-X SYSTEMS, INC. IS ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES, INCLUDING WITHOUT LIMITATION DAMAGES ARISING FROM OR RELATED TO LOSS OF USE, LOSS OF DATA, DOWNTIME, OR FOR LOSS OF REVENUE, PROFITS, GOODWILL OR BUSINESS OR OTHER FINANCIAL LOSS. IN ANY CASE, THE ENTIRE LIABILITY OF INNOV-X SYSTEMS, INC. AND ITS SUPPLIERS UNDER THIS LICENSE, OR ARISING OUT OF THE USE OF THE SOFTWARE, SHALL NOT EXCEED IN THE AGGREGATE THE PURCHASE PRICE OF THE PRODUCT.

SOME STATES, COUNTRIES OR JURISDICTIONS LIMIT THE SCOPE OF OR PRECLUDE LIMITATIONS OR EXCLUSION OF REMEDIES OR DAMAGES, OR OF LIABILITY, SUCH AS LIABILITY FOR GROSS NEGLIGENCE OR WILLFUL MISCONDUCT, AS OR TO THE EXTENT SET FORTH ABOVE, OR DO NOT ALLOW IMPLIED WARRANTIES TO BE EXCLUDED. IN SUCH STATES, COUNTRIES OR JURISDICTIONS, THE LIMITATION OR EXCLUSION OF WARRANTIES, REMEDIES, DAMAGES OR LIABILITY SET FORTH ABOVE MAY NOT APPLY TO YOU. HOWEVER, ALTHOUGH THEY SHALL NOT APPLY TO THE EXTENT PROHIBITED BY LAW, THEY SHALL APPLY TO THE FULL-EST EXTENT PERMITTED BY LAW. YOU MAY ALSO HAVE OTHER RIGHTS THAT VARY BY STATE, COUNTRY OR OTHER JURISDICTION.

General

This Agreement shall be governed by laws of the State of Massachusetts, exclusive of its conflict of laws provisions. This Agreement shall not be governed by the United Nations Convention on Contracts for the International Sale of Goods. This Agreement contains the complete agreement between the parties with respect to the subject matter hereof, and supersedes all prior or contemporaneous agreements or understandings, whether oral or written. If any provision of this Agreement is held by a court of competent jurisdiction to be contrary to law that provision will be enforced to the maximum extent permissible and the remaining provisions of this Agreement will remain in full force and effect. The controlling language of this Agreement, and any proceedings relating to this Agreement, shall be English. You agree to bear any and all costs of translation, if necessary. The headings to the sections of this Agreement are used for convenience only and shall have no substantive meaning. All questions concerning this Agreement shall be directed to Innov-X Systems, Inc., 100 Sylvan Road, Suite 500, Woburn, MA 01801 USA. Tel: 1-781-938-5005 Fax: 1-781-938-0128
A8. Alloy Grade Libraries

Every Delta unit is supplied with four libraries:
1. “Factory” Library unique to every Model
 — See following pages for tables showing Model/Factory grade names
2. Tramp Library
3. User Library #1 (user may store more than 500 grade names)
4. User Library #2 (user may store more than 500 grade names)

Libraries are editable. However, InnovX does not recommend that users edit the “Factory” grade library.

Tramp Library

Every analyzer is shipped with a “Tramp” library comprised of seven base alloys. The “Tramp” library supports other grade libraries.

Users can set Tramp Limits, element by element, alloy base by alloy base, to meet their specific requirements.

A single click can select/deselect (globally) the Tramp feature.

How the Tramp Library works:

1. Tramp Grades are matched to alloy bases rather than specific grades.
 — Each sample is determined to be one of seven possible base alloys - see list below
 — Analyzer applies the Tramp Grade/base specific tramp limits from the matching Tramp Grade;
2. These “Tramp Limits” or “alloy base specific” limits are applied when an element is detected in a specific grade.
 — But, the nearest grade match has no specification for that element,
 — And, the concentration of the sample is less than the max limit specified by the matching Tramp Grade.
3. When conditions of #2 are met, the element is reported on the User Interface screen.
 • In blue;
 • Is labeled as a “Tramp” material in the grade comparison table;
 • But the grade match is not penalized.

TRAMP Library Base Alloys

_common.AlloyBase
_Common Tramp Elements: Pb, Bi, Sn, Fe, Cu, Zn
_common.CoAlloyBase
_Common Tramp Elements: Al, Ti, V, Cu, Nb, Ta, Zr
_common.CuAlloyBase
_Common Tramp Elements: S, As, Ag, Sb, Sn; not as common Pb, Co, Ni
_common.FeAlloyBase
_Common Tramp Elements: V, Co, Cu, Ni, As - sometimes Si, W, Nb
_common.GenericAlloyBase
_Common Tramp Elements: V, Co, Cu, Ni, As - sometimes Si, W, Nb
_common.NiAlloyBase
_Common Tramp Elements: V, Co, W, Zr, Nb - sometimes Ta, Mo, Cr, Cu
_common.TiAlloyBase
_Common Tramp Elements: Fe is common, Cu & Si show up at low levels.
Copper Alloys - C

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>60Sn-40Pb</td>
<td>63Sn-37Pb</td>
<td>96-4</td>
<td>AZ31B</td>
<td>AZ91A or C</td>
<td>SAC 300</td>
<td>SAC 305</td>
<td>SAC 400</td>
<td>SAC 405</td>
<td>97-3</td>
<td>Ag</td>
<td>Au</td>
<td>Bi</td>
<td>Cb 103</td>
<td>CP Ta</td>
<td>Cr</td>
<td>Densalloy</td>
<td>Hf</td>
<td>Mo</td>
<td>Nb</td>
</tr>
</tbody>
</table>

Nickel Alloys - C

<table>
<thead>
<tr>
<th>B1900</th>
<th>I-167</th>
<th>I-617</th>
<th>MarM21</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1900 Hf</td>
<td>625</td>
<td>690</td>
<td>Monel400</td>
</tr>
<tr>
<td>C-1023</td>
<td>700</td>
<td>702</td>
<td>Monel500</td>
</tr>
<tr>
<td>GMR235</td>
<td>706</td>
<td>713</td>
<td>MuMetal</td>
</tr>
<tr>
<td>GTD222</td>
<td>718</td>
<td>720</td>
<td>Ni 200</td>
</tr>
<tr>
<td>Hast BC1</td>
<td>722</td>
<td>725</td>
<td>NichromeV</td>
</tr>
<tr>
<td>HastB</td>
<td>738</td>
<td>750</td>
<td>Nim101</td>
</tr>
<tr>
<td>HastB2</td>
<td>792</td>
<td>800</td>
<td>Nim263</td>
</tr>
<tr>
<td>HastB3</td>
<td>801</td>
<td>825</td>
<td>Nimonic75</td>
</tr>
<tr>
<td>HastC2000</td>
<td>901</td>
<td>903</td>
<td>Nimonic80A</td>
</tr>
<tr>
<td>HastC22</td>
<td>907-909</td>
<td>939</td>
<td>Nimonic90</td>
</tr>
<tr>
<td>HastC276</td>
<td>I-600</td>
<td>I-601</td>
<td>PWA1480</td>
</tr>
<tr>
<td>HastC4</td>
<td>I-607</td>
<td>I-625</td>
<td>PWA1484</td>
</tr>
<tr>
<td>HastF</td>
<td>I-690</td>
<td>I-700</td>
<td>RA333</td>
</tr>
<tr>
<td>HastG</td>
<td>I-702</td>
<td>I-706</td>
<td>Rene125</td>
</tr>
<tr>
<td>HastG2</td>
<td>I-713</td>
<td>I-718</td>
<td>Rene142</td>
</tr>
<tr>
<td>HastG3</td>
<td>I-718</td>
<td>I-720</td>
<td>Rene220</td>
</tr>
<tr>
<td>HastG30</td>
<td>I-722</td>
<td>I-725</td>
<td>Rene41</td>
</tr>
<tr>
<td>HastN</td>
<td>I-725</td>
<td>I-738</td>
<td>Rene77</td>
</tr>
<tr>
<td>HastR</td>
<td>I-750</td>
<td>I-792</td>
<td>Rene80</td>
</tr>
<tr>
<td>HastS</td>
<td>I-800</td>
<td>I-801</td>
<td>Rene95</td>
</tr>
<tr>
<td>HastW</td>
<td>I-825</td>
<td>I-901</td>
<td>Supertherm</td>
</tr>
<tr>
<td>HastX</td>
<td>I-903</td>
<td>I-907-909</td>
<td>Udemit500</td>
</tr>
<tr>
<td>Haynes230</td>
<td>I-939</td>
<td>IN100Mar</td>
<td>Udemit520</td>
</tr>
<tr>
<td>HR160</td>
<td>I-907-909</td>
<td>M002</td>
<td>Udemit700</td>
</tr>
<tr>
<td>HyMu80</td>
<td>I-939</td>
<td>MarM200</td>
<td>Waspaloy</td>
</tr>
<tr>
<td>I-1021-49</td>
<td>I-907-909</td>
<td>MarM246</td>
<td></td>
</tr>
</tbody>
</table>
Factory Grade Library {Table A9.2-Classic}

<table>
<thead>
<tr>
<th>Stainless Grades - C</th>
<th>Ti Grades - C</th>
<th>Tool Steels- C</th>
</tr>
</thead>
<tbody>
<tr>
<td>201, 203, 304, 309, 310, 316, 317, 321, 329, 330, 347, 422, 430, 431, 434, 441, 446, 2003, 2101, 2507, 13-8 Mo, 15-5 PH, 15Mn7Cr, 17-4 PH, 17-7 PH, 19-9DL, 19-9DX, 20Cb3, 20Mo6</td>
<td>21-6-9, 25-4-4, 254SMO, 26-1, 29-4, 29-4-2, 29-4C, 302HQ, 410 Cb, 410-16-20, 904L, A-286, AL6XN, Alloy42, Alnicoll, AlnicollII, Alnicov, AMS350, AMS355, CD4MCU, Custom450, Custom455, Duplex2205, E-bite, Ferallium255, GreekAscoloy, H12, H13</td>
<td>A2, A6, A7, D2 or D4, D7, H-11, M1, M2, M4, M42, O1, O2, O6, O7, S1, S5, S6, S7, T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2101, 2507, 13-8 Mo, 15-5 PH, 15Mn7Cr, 17-4 PH, 17-7 PH, 19-9DL, 19-9DX, 20Cb3, 20Mo6</td>
<td>21-6-9, 25-4-4, 254SMO, 26-1, 29-4, 29-4-2, 29-4C, 302HQ, 410 Cb, 410-16-20, 904L, A-286, AL6XN, Alloy42, Alnicoll, AlnicollII, Alnicov, AMS350, AMS355, CD4MCU, Custom450, Custom455, Duplex2205, E-bite, Ferallium255, GreekAscoloy, H12, H13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>201, 203, 304, 309, 310, 316, 317, 321, 329, 330, 347, 422, 430, 431, 434, 441, 446, 2003, 2101, 2507, 13-8 Mo, 15-5 PH, 15Mn7Cr, 17-4 PH, 17-7 PH, 19-9DL, 19-9DX, 20Cb3, 20Mo6</td>
<td>21-6-9, 25-4-4, 254SMO, 26-1, 29-4, 29-4-2, 29-4C, 302HQ, 410 Cb, 410-16-20, 904L, A-286, AL6XN, Alloy42, Alnicoll, AlnicollII, Alnicov, AMS350, AMS355, CD4MCU, Custom450, Custom455, Duplex2205, E-bite, Ferallium255, GreekAscoloy, H12, H13</td>
</tr>
</tbody>
</table>
Factory Grade Library (Table A9.3-Standard)

Aluminums

<table>
<thead>
<tr>
<th>Aluminums-S</th>
<th>Cobalt Alloys - S</th>
<th>Specialty Grades - S</th>
<th>Copper Alloys - S</th>
</tr>
</thead>
<tbody>
<tr>
<td>319</td>
<td>Alloy 686</td>
<td>60Sn-40Pb</td>
<td>C 110</td>
</tr>
<tr>
<td>333</td>
<td>Alnico VIII</td>
<td>63Sn-37Pb</td>
<td>C 172</td>
</tr>
<tr>
<td>380</td>
<td>Cobalt</td>
<td>96-4</td>
<td>C 194</td>
</tr>
<tr>
<td>383</td>
<td>Eligloy</td>
<td>AZ31B</td>
<td>C 210</td>
</tr>
<tr>
<td>384</td>
<td>F75</td>
<td>AZ91A or C</td>
<td>C 220</td>
</tr>
<tr>
<td>2007</td>
<td>FSX-414</td>
<td>SAC 300</td>
<td>C 260</td>
</tr>
<tr>
<td>2011</td>
<td>Haynes188</td>
<td>SAC 305</td>
<td>C 270</td>
</tr>
<tr>
<td>2018</td>
<td>Haynes36</td>
<td>SAC 400</td>
<td>C 310</td>
</tr>
<tr>
<td>2024</td>
<td>HS-1</td>
<td>SAC 405</td>
<td>C 314</td>
</tr>
<tr>
<td>2117</td>
<td>HS-12</td>
<td>97-3</td>
<td>C 330</td>
</tr>
<tr>
<td>2618</td>
<td>HS-19</td>
<td>Ag</td>
<td>C 332</td>
</tr>
<tr>
<td>2104</td>
<td>HS-21</td>
<td>Au</td>
<td>C 340</td>
</tr>
<tr>
<td>2005</td>
<td>HS-31</td>
<td>Bi</td>
<td>C 342</td>
</tr>
<tr>
<td>7016</td>
<td>HS-4</td>
<td>Cb 103</td>
<td>C 360</td>
</tr>
<tr>
<td>7019</td>
<td>HS-6B</td>
<td>Cr</td>
<td>C 377</td>
</tr>
<tr>
<td>7039</td>
<td>Jetalloy</td>
<td>Densalloy</td>
<td>C 425</td>
</tr>
<tr>
<td>7050</td>
<td>MarM302</td>
<td>Hf</td>
<td>C 443</td>
</tr>
<tr>
<td>7072</td>
<td>MarM509</td>
<td>Mn</td>
<td>C 464</td>
</tr>
<tr>
<td>7075</td>
<td>MarM905</td>
<td>Mo</td>
<td>C 482</td>
</tr>
<tr>
<td>7104</td>
<td>MP35N</td>
<td>Nb</td>
<td>C 485</td>
</tr>
<tr>
<td>1100-plus</td>
<td>MPN159</td>
<td>Ni</td>
<td></td>
</tr>
<tr>
<td>2014-17 std</td>
<td>Star J</td>
<td>Pb</td>
<td></td>
</tr>
<tr>
<td>2024-plus</td>
<td>Ultimet</td>
<td>Pd</td>
<td></td>
</tr>
<tr>
<td>2098-2195</td>
<td></td>
<td>Re</td>
<td></td>
</tr>
<tr>
<td>2219-2519</td>
<td></td>
<td>Sb</td>
<td></td>
</tr>
<tr>
<td>3003 or 4 or 5</td>
<td></td>
<td>Se</td>
<td></td>
</tr>
<tr>
<td>3003 or 5</td>
<td></td>
<td>Sn</td>
<td></td>
</tr>
<tr>
<td>355-2</td>
<td></td>
<td>TungCarb C</td>
<td></td>
</tr>
<tr>
<td>356-57-standard</td>
<td></td>
<td>TungCarb S</td>
<td></td>
</tr>
<tr>
<td>5052-plus</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>5056-82</td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>5086-plus</td>
<td></td>
<td>Zn</td>
<td></td>
</tr>
<tr>
<td>6063-plus</td>
<td></td>
<td>Zr</td>
<td></td>
</tr>
<tr>
<td>7049-149-249</td>
<td></td>
<td>Zr 2 or 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zr 702</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zr 704</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zr 705</td>
<td></td>
</tr>
</tbody>
</table>

Low Alloy Steels-S

<table>
<thead>
<tr>
<th>Low Alloy Steels-S</th>
<th>Specialty Grades - S</th>
<th>Copper Alloys - S</th>
</tr>
</thead>
<tbody>
<tr>
<td>3310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8620</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12L14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carb 1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135 N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specialty Grades - S

Chromium-Moly Steels - S

- 1 1-4 Cr
- 2 1-4 Cr
- 5 Cr
- 9 Cr
- P91

Copper Alloys - S

- C 110
- C 172
- C 194
- C 210
- C 220
- C 260
- C 270
- C 310
- C 314
- C 330
- C 332
- C 340
- C 342
- C 360
- C 377
- C 425
- C 443
- C 464
- C 482
- C 485

Nickel Alloys - S

- 20Mo4
- B 1900
- B-1900 Hf
- C-1023
- Colmonoy 6
- GMR235
- GTD222
- Hast BC1
- Hast B
- Hast B2
- Hast B3
- Hast C2000
- Hast C22
- Hast C276
- Hast C4
- Hast F
- Hast G
- Hast G2
- Hast G3
- Hast G30
- Hast N
- Hast R
- Hast S
- Hast W
- Hast X
- Haynes214
- Haynes230
- HR160
- HyMu80

Cobalt Alloys - S

- Waspaloy
- Udimet 700
- Udimet 520
- Udimet 500
- Supertherm
- Rene 125
- Rene 142
- Rene 41
- Rene 77
- Rene 80
- Rene 95
- Supertherm
- Udiment 500
- Udiment 520
- Udiment 700
- Waspaloy

Low Alloy Steels-S

- 20Mo4
- B 1900
- B-1900 Hf
- C-1023
- Colmonoy 6
- GMR235
- GTD222
- Hast BC1
- Hast B
- Hast B2
- Hast B3
- Hast C2000
- Hast C22
- Hast C276
- Hast C4
- Hast F
- Hast G
- Hast G2
- Hast G3
- Hast G30
- Hast N
- Hast R
- Hast S
- Hast W
- Hast X
- Haynes214
- Haynes230
- HR160
- HyMu80

Specialty Grades - S

- 60Sn-40Pb
- 63Sn-37Pb
- 96-4
- AZ31B
- AZ91A or C
- SAC 300
- SAC 305
- SAC 400
- SAC 405
- 97-3
- Ag
- Au
- Bi
- Cb 103
- CP Ta
- Cr
- Densalloy
- Hf
- Mn
- Mo
- Nb
- Ni
- Pb
- Pd
- Re
- Sb
- Se
- Sn
- TungCarb C
- TungCarb S
- V
- W
- Zn
- Zr
- Zr 2 or 4
- Zr 702
- Zr 704
- Zr 705

Copper Alloys - S

- C 110
- C 172
- C 194
- C 210
- C 220
- C 260
- C 270
- C 310
- C 314
- C 330
- C 332
- C 340
- C 342
- C 360
- C 377
- C 425
- C 443
- C 464
- C 482
- C 485

Nickel Alloys - S

- 20Mo4
- B 1900
- B-1900 Hf
- C-1023
- Colmonoy 6
- GMR235
- GTD222
- Hast BC1
- Hast B
- Hast B2
- Hast B3
- Hast C2000
- Hast C22
- Hast C276
- Hast C4
- Hast F
- Hast G
- Hast G2
- Hast G3
- Hast G30
- Hast N
- Hast R
- Hast S
- Hast W
- Hast X
- Haynes214
- Haynes230
- HR160
- HyMu80

Reference

- PN_103201 RevA: June/2010
- A8. Alloy Grade Libraries
Factory Grade Library (Table A9.4-Standard)

<table>
<thead>
<tr>
<th>Stainless Grades - S</th>
<th>Ti Grades - S</th>
<th>Tool Steels- S</th>
</tr>
</thead>
<tbody>
<tr>
<td>201 17-4 PH</td>
<td>H12</td>
<td>A2</td>
</tr>
<tr>
<td>203 17-7 PH</td>
<td>H13</td>
<td>A6</td>
</tr>
<tr>
<td>303 19-9DL</td>
<td>Haynes556</td>
<td>A7</td>
</tr>
<tr>
<td>304 19-9DX</td>
<td>Incoloy840</td>
<td>D2 or D4</td>
</tr>
<tr>
<td>309 20Cb3</td>
<td>Invar 36</td>
<td>D7</td>
</tr>
<tr>
<td>310 20Mo6</td>
<td>Kovar</td>
<td>H-11</td>
</tr>
<tr>
<td>316 21-6-9</td>
<td>M152</td>
<td>M1</td>
</tr>
<tr>
<td>317 25-4-4</td>
<td>Maraging350</td>
<td>M2</td>
</tr>
<tr>
<td>321 254SMO</td>
<td>MaragingC200</td>
<td>M4</td>
</tr>
<tr>
<td>329 26-1</td>
<td>MaragingC250</td>
<td>M42</td>
</tr>
<tr>
<td>330 29-4</td>
<td>MaragingC300</td>
<td>O1</td>
</tr>
<tr>
<td>347 29-4-2</td>
<td>N-155</td>
<td>O2</td>
</tr>
<tr>
<td>410 29-4C</td>
<td>Ni-hard#1</td>
<td>O6</td>
</tr>
<tr>
<td>416 302HQ</td>
<td>Ni-hard#4</td>
<td>O7</td>
</tr>
<tr>
<td>420 410 Cb</td>
<td>Ni-Span902</td>
<td>S1</td>
</tr>
<tr>
<td>422 410-16-20</td>
<td>Nitronic40</td>
<td>S5</td>
</tr>
<tr>
<td>430 904L</td>
<td>Nitronic50</td>
<td>S6</td>
</tr>
<tr>
<td>431 A-286</td>
<td>Nitronic60</td>
<td>S7</td>
</tr>
<tr>
<td>434 AL6XN</td>
<td>RA330</td>
<td>T1</td>
</tr>
<tr>
<td>440 AlnicoII</td>
<td>RA85H</td>
<td></td>
</tr>
<tr>
<td>441 AlnicoV</td>
<td>Zeron100</td>
<td></td>
</tr>
<tr>
<td>2003 AMS350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2101 AMS355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2205 CD4MCU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2205 Custom450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2507 Custom455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-8 Mo</td>
<td>E-bite</td>
<td></td>
</tr>
<tr>
<td>15-5 PH</td>
<td>Ferallium255</td>
<td></td>
</tr>
<tr>
<td>15Mn7Cr</td>
<td>GreekAscoloy</td>
<td></td>
</tr>
</tbody>
</table>

Delta STANDARD
Factory Grade Library {Table A9.5-Premium}

Aluminums - P
- 319
- 333
- 356
- 357
- 380
- 383
- 384
- 1100
- 2007
- 2011
- 2018
- 2024
- 2117
- 2618
- 3002
- 3003
- 3004
- 3005
- 3105
- 4032
- 5005
- 5042
- 5052
- 5083
- 5086
- 5154
- 5454
- 5657
- 6040
- 6061
- 6063
- 6070
- 6253
- 6262
- 7005
- 7016
- 7019
- 7039
- 7050
- 7072
- 7075
- 7104
- 1100-plus
 - 2014-17
 - 2024-plus
 - 2098-2195
 - 2219-2519
 - 3003 or 4 or 5
 - 355-2
 - 5052-plus
 - 5056-82
 - 5086-plus
 - 6063-plus
 - 7049-149-249

Cobalt Alloys - P
- Alloy 686
- AlnicoVIII
- Cobalt
- Elgiloy
- F75
- FSX-414
- Haynes188
- Haynes36
- HS-1
- HS-12
- HS-19
- HS-21
- HS25-L605
- HS-31
- HS-4
- HS-6B
- Jetalloy
- MarM302
- MarM509
- MarM905
- MP35N
- MPN159
- Star J
- Ultimet

Specialty Grades - P
- 60Sn-40Pb
- 63Sn-37Pb
- 96-4
- AZ13B
- AZ91A or C
- SAC 300
- SAC 305
- SAC 400
- SAC 405
- 97-3
- Ag
- Au
- Bi
- Cb 103
- CP Ta
- Cr
- Densalloy
- Hf
- Mn
- Mo
- Nb
- Ni
- Pb
- Pd
- Re
- Sb
- Se
- Sn
- TungCarb C
- TungCarb S
- V
- W
- Zn
- Zr
- Zr 2 or 4
- Zr 702
- Zr 704
- Zr 705

Copper Alloys - P
- C 110
- C 172
- C 194
- C 210
- C 220
- C 240
- C 260
- C 270
- C 310
- C 314
- C 330
- C 332
- C 340
- C 342
- C 360
- C 377
- C 425
- C 443
- C 464
- C 482
- C 485
- C 510
- C 524
- C 534
- C 544
- C 546
- C 563
- C 565
- C 667
- C 673
- C 675
- C 687
- C 687
- C 706
- C 710
- C 715
- C 745
- C 752
- C 814
- C 836
- C 857
- C 861
- C 864
- C 867
- C 868
- C 875
- C 8932
- C 903
- C 922
- C 932
- C 937
- C 954
- C 955
- C194HiCu
- C197HiCu
- Elec Cu
- Muntz
- NarloyZ
- SeBiLOYI
- SeBiLOYII
- SeBiLOYIII

Nickel Alloys - P
- 20Mo4
- B 1900
- B-1900 Hf
- C-1023
- Colmonoy
- 6
- GMR235
- GTD222
- Hast BC1
- HastB
- HastB2
- HastB3
- HastC2000
- HastC22
- HastC276
- HastC4
- HastF
- HastG
- HastG2
- HastG3
- HastG30
- HastN
- HastR
- HastS
- HastW
- Haynes214
- Haynes230
- HR160
- HyMu80
- I-102
- I-49
- I-600
- I-601
- I-602
- I-617
- I-625
- I-690
- I-700
- I-702
- I-706
- I-713
- I-718
- I-720
- I-722
- I-725
- I-738
- I-750
- I-792
- I-800
- I-801
- I-825
- I-901
- I-903
- I-907-909
- I-939
- IN100
- MarM002
- MarM200
- MarM246
- MarM247
- MarM421
- Monel400
- Monel411
- MonelK500
- MuMetal
- Ni 200
- NichromeV
- Nim101
- Nim263
- Nimonic75
- Nimonic80A
- Nimonic90
- PWA1480
- PWA1484
- RA333
- Rene125
- Rene142
- Rene220
- Rene41
- Rene77
- Rene80
- Rene95
- Supertherm
- Udimet500
- Udimet520
- Udimet700
- Waspaloy

Low Alloy Steels - P
- 3310
- 4130
- 4140
- 4340
- 8620
- 9310
- 12L14
- A10
- Carb 1-2
- Moly
- Carbon Steel
- P20
- 135 N

Chrome-Moly Steels - P
- 1.1-4 Cr
- 2.1-4 Cr
- 5 Cr
- 9 Cr
- P91

Factory Grade Library (Table A9.6-Premium)

Stainless Grades - P

201	17-4 PH	H12
203	17-7 PH	H13
303	19-9DL	Haynes556
304	19-9DX	Incoloy840
309	20Cb3	Invar 36
310	20Mo6	Kovar
316	21-6-9	M152
317	25-4-4	Maraging350
321	254SMO	MaragingC200
329	26-1	MaragingC250
330	29-4	MaragingC300
347	29-4-2	N-155
410	29-4C	Ni-hard#1
416	302HQ	Ni-hard#4
420	410 Cb	Ni-Span902
422	410-16-20	Nitronic40
430	904L	Nitronic50
431	A-286	Nitronic60
434	AL6XN	RA330
440	Alloy42	RA85H
441	AlnicoII	Zeron100
446	AlnicoV	
2003	AMS350	
2101	AMS355	
2205	CD4MCU	
2507	Custom450	
13-8 Mo	Custom455	
15-5 PH	E-bite	
15Mn7Cr	Ferrallium255	
	GreekAscoloy	

Ti Grades - P

Cp Ti	H12
Cp Ti Pd	H13
T1 12	Haynes556
T1 17	Incoloy840
T1 3 2-5	Invar 36
T1 6-22-22	Kovar
T1 6-2-4-2	M152
T1 6-2-4-6	Maraging350
T1 6-4	MaragingC200
T1 6-6-2	MaragingC250
T1 8	MaragingC300
T1 8-1-1	N-155
T10-2-3	Ni-hard#1
T15-3-3-3	Ni-hard#4
T13-11-13	Ni-Span902
T15 - 2-5	Nitronic40
T16-2-1-1	Nitronic50
TiBetaC	Nitronic60

Tool Steels- P

A2	Cp Ti Pd
A6	H12
A7	T1 12
D2 or D4	Haynes556
D7	Incoloy840
H-11	Invar 36
M1	Kovar
M2	M152
M4	Maraging350
M42	MaragingC200
O1	MaragingC250
O2	MaragingC300
O6	N-155
O7	Ni-hard#1
S1	Ni-hard#4
S5	Ni-Span902
S6	Nitronic40
S7	Nitronic50
T1	Nitronic60
	RA330
	RA85H
	Zeron100
See “Delta User Interface Guide” (PN 103202) for a complete description for using Alloy modes’ new capabilities such as:
- Grade Match Messaging,
- SmartSorting,
- Nominal Chemistry, and
- Tramp Library management.